Документ подписан простой электронной подписью Информация о владельце:

ФИО: Дмитриев Никумей НИКОГО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: Ректор

Дата подписания: 14.02.20**ЖРЖУ:ТВСКИЙ ГО**СУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

Уникальный программный ключ:

имени А.А. ЕЖЕВСКОГО

f7c6227919e4cdbfb4d7b682991f8553k37cafbdдж автомобильного транспорта и агротехнологий

Утверждаю Директор Бельков Н.Н

«31» <u>марта 2023</u> г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ для проведения промежуточной аттестации по учебной дисциплине

ОП.О4 ТЕХНИЧЕСКАЯ МЕХАНИКА

Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям)

(программа подготовки специалистов среднего звена)

Форма обучения: очная /заочная

2 курс, семестр 3/3 курс

1. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Фонд оценочных средств для промежуточной аттестации по дисциплине «ОП.04 Техническая механика» включает:

- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения (промежуточной аттестации) по дисциплине, характеризующих этапы формирования компетенций и (или) для итогового контроля сформированности компетенции (ий).

2. ПЕРЕЧЕНЬ КОМПЕТЕНЦИЙ С УКАЗАНИЕМ ЭТАПОВ ИХ ФОРМИРОВАНИЯ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Рабочая программа дисциплины ОП.04 Техническая механика определяет перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Код	Наименование компетенции (планируемые результаты освоения ОП)	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенции				
ОК 01	Общие компетенции Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам	В области знания и понимания (А) Знать:				
ОК 02	Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности	- основы технической механики; - виды механизмов, их кинематические и динамические характеристики; - методику расчета элементов конструкций на прочность, жесткость и устойчивость при различных видах				
ОК 03	Планировать и реализовывать собственное профессиональное и личностное развитие, Эффективно взаимодействовать и	деформации; - основы расчетов механических передач и простейших сборочных единиц общего назначения.				
ОК 04	работать в коллективе и команде					

ОК 07	Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях	
	Профессиональные компетенции	
ПК 1.1	Выполнять наладку, регулировку и проверку электрического и электромеханического оборудования	В области интеллектуальных навыков (В)
ПК 1.2	Организовывать и выполнять техническое обслуживание и ремонт электрического и электромеханического оборудования.	Уметь: - производить расчеты механических передач и простейших сборочных единиц; - читать кинематические схемы; - определять механические напряжения в элементах конструкции

В рабочей программе дисциплины ОП.04 Техническая механика **ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ** определены тематическим планом.

3. ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ

При проведении промежуточной аттестации в колледже используются традиционные формы аттестации:

Форма промежуточной аттестации	Шкала оценивания				
ЗАЧЕТ	"зачтено",				
	"незачтено"				
ЗАЧЕТ С ОЦЕНКОЙ	"отлично",				
(дифференцированный зачет)	"хорошо",				
	"удовлетворительно",				
	"неудовлетворительно"				
ЭКЗАМЕН	"отлично",				
	"хорошо",				
	"удовлетворительно",				
	"неудовлетворительно"				
ДРУГИЕ: зачет в форме тестирования,	"зачтено",				
устного опроса, контрольной работы и	"незачтено"				
т.п.					

4. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ (ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ) ПО ДИСЦИПЛИНЕ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ И (ИЛИ) ДЛЯ ИТОГОВОГО КОНТРОЛЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИИ

- **4.1. Перечень вопросов к экзамену** для оценивания результатов обучения в виде ЗНАНИЙ (ОК 01, ОК 02, ОК 03, ОК 04, ОК 07).
- 1. Вопрос. Материальная точка. Абсолютно твердое тело. Сила, её размерность в системе СИ.

Ответ: Материальная точка — это тело, геометрическими размерами которого в условиях задачи можно пренебречь и считать, что вся масса тела сосредоточена в геометрической точке.

Абсолютно твёрдое тело (просто твёрдое тело) — это система, состоящая из совокупности материальных точек, расстояния между которыми можно считать неизменными.

Сила в механике, векторная физическая величина, мера воздействия на материальную точку (тело) со стороны других тел. В системе СИ сила измеряется в Ньютонах.

2. Вопрос. Связи и их реакции.

Ответ:

Материальные тела, ограничивающие перемещение данного тела в пространстве, называют связями. Сила, с которой связь действует на тело, ограничивая его перемещение, называется реакцией связи.

Аксиома освобождаемости от связей. Механическое состояние системы не изменится, если освободить её от связей и приложить к точкам системы силы, равные действовавшим на них силам реакций связей.

- гладкая поверхность (без трения);
- гибкая невесомая нить;
- невесомый стержень с шарнирно закрепленными концами;
- подвижный шарнир без трения (каток);
- неподвижный шарнир;
- жесткая заделка.
- 3. Вопрос. Момент силы относительно точки. Момент пары сил.

Ответ: Момент силы относительно точки О равен произведению модуля силы F на её плечо h, равное расстоянию от моментной точки О до линии действия силы: $M_O = F \cdot h$.

Момент силы измеряется в системе СИ в ньютон-метрах (H · м).

Пара сил — это система двух равных по величине, противоположных по направлению и не лежащих на одной прямой сил.

Момент пары сил — это величина, равная произведению модуля одной из сил пары на её плечо. Момент пары считается положительным, если силы пары стремятся повернуть плоскость, в которой они расположены, против хода часовой стрелки.

4. **Вопрос**. Основные понятия кинематики: траектория, путь, время, скорость и ускорение. Способы задания движения точки.

Ответ: Кинематика – раздел механики, изучающий движение с геометрической точки зрения, без учета действующих сил.

Траектория — это линия, которую описывает тело при своём движении.

Путь — это скалярная величина, равная длине траектории.

Перемещение — это вектор, соединяющий начальное положение тела с его конечным положением.

Скорость — вектор характеризует быстроту перемещения и направление движения материальной точки. Ускорение — это векторная величина, характеризующая быстроту изменения скорости.

Три способа задания движения:

Векторный способ. Положение точки определяется радиус-вектором, проведённым из неподвижной точки в выбранной системе отсчёта.

Координатный способ. Задаются координаты точки как функции времени.

Естественный способ. Задаются траектория точки, начало отсчёта на траектории, закон изменения координаты.

5. Вопрос. Различные случаи движения тела.

Ответ: В зависимости от скорости: Равномерное и неравномерное движение.

Равнопеременное движение, при котором скорость изменяется на одинаковую величину за равные промежутки времени.

В зависимости от вида траектории. Поступательное движение тела, при котором прямая, соединяющая две какие-либо точки тела, перемещается параллельно своему первоначальному направлению. При поступательном движении траектории всех точек тела одинаковы.

Криволинейное движение. Перемещение в пространстве по искривлённому пути в том числе по окружности, вращательное движение.

Плоскопараллельное движение твердого тела можно представить как сложение поступательного движения и вращения вокруг оси.

6. **Вопрос**. Понятие о трении. Трение скольжения. Трение качения. Трение покоя.

Ответ: Трение процесс, возникающий при относительном движении соприкасающихся тел.

Трением скольжения называется трение движения, при котором скорости тел в точке касания различны по значению и (или) направлению. Трение покоя, обусловлено, скольжения, как трение прежде всего, деформацией поверхностей, шероховатостью И также наличием молекулярного сцепления прижатых друг к другу тел.

Трение качения — сопротивление движению, возникающее при перекатывании тел друг по другу. Причина трения качения — деформация катка и опорной поверхности, а также силы адгезии.

Трение покоя— сила, возникающая между двумя неподвижными контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга.

7. **Вопрос**. Закон Гука при растяжении(сжатии). Прочность при растяжении.

Ответ: Закон Гука при растяжении и сжатии гласит, что нормальное напряжение прямо пропорционально относительному удлинению или

укорочению. Математически эта зависимость записывается так: $\sigma = E$ ϵ , где E — коэффициент пропорциональности (Модуль упругости), который характеризует жёсткость материала бруса, то есть его способность сопротивляться деформации.

Прочность стержня при осевом растяжении и сжатии обеспечена, если для каждого его поперечного сечения наибольшее расчётное напряжение σ не превосходит допускаемого [σ]. Формула для расчёта: $\sigma = N/A \le [\sigma]$, где N — значение продольной силы в сечении, A — площадь поперечного сечения, [σ] — допускаемое напряжение при растяжении (сжатии) материала стержня.

8. **Вопрос**. Классификация механических передач. Характеристики передач.

Ответ: В зависимости от принципа действия механические передачи разделяют на две основные группы: передачи зацеплением (зубчатые, червячные, цепные); передачи трением (фрикционные, ременные). Каждая из указанных групп передач подразделяется на две подгруппы: передачи с непосредственным контактом звеньев; передачи с гибкой связью (цепь, ремень).

Основные характеристики механических Главными передач. необходимыми расчета характеристиками ДЛЯ ee передачи, проектирования, являются передаваемые мощности (по величине и направлению) и скорости вращения входных валов-(ведущих), промежуточных, выходных (ведомых). В технических расчетах вместо угловых скоростей обычно используются частоты вращения валов - $\mathbf{n}_{\text{вх}}$ и **n**_{вых}, измеряемые в оборотах за минуту.

Передаточное отношение: $u_{12} = \omega_1/\omega_2 = n_1/n_2$.

Мощность Р при вращательном движении равна: $P=T\omega$.

Отношение мощности P_2 на ведомом валу передачи к мощности P_1 на ведущем валу называется **механическим коэффициентом полезного** действия (КПД): $\eta = P_2/P_1$.

9. **Вопрос**. Подшипники скольжения и качения, достоинства, недостатки. **Ответ**: Подшипники поддерживают вращающиеся валы передач, воспринимают нагрузки от деталей и передают эти нагрузки на корпус машины. По характеру трения различают подшипники скольжения и качения.

Подшипники скольжения имеют следующие достоинства:

выдерживают большие нагрузки и вибрации; компактны по размерам; просты в изготовлении; разъёмные легко монтируются и демонтируются; работают практически бесшумно.

Недостатки:

нуждаются в регулярной смазке; без качественной смазки быстро изнашиваются; требуют тщательного контроля рабочих условий.

Подшипники качения имеют следующие достоинства:

большой срок службы, меньшая требовательность к смазке; компактность при высокой грузоподъёмности.

Недостатки:

более высокая стоимость; не подходят для валов с большими осевыми и радиальными нагрузками; менее надёжны в сравнении со скольжением; чувствительны к попаданию влаги и пыли.

10. Вопрос. Сварные соединения в машинах.

Ответ: Соединением называют устройство обычно для неподвижного фиксирования деталей. Могут быть разъемные и неразъемные. Наиболее распространены сварные и резьбовые соединения.

Сварные соединения в машинах получают при помощи сварки различных типов (электродуговая сварка, газосварка и т. д.). В зависимости от расположения свариваемых деталей сварные соединения делят на: стыковые, нахлесточные, тавровые и угловые. Расчет на прочность стыковых швов выполняют по нормальным напряжениям на растяжение и на изгиб. Угловые швы сварного соединения рассчитывают на срез.

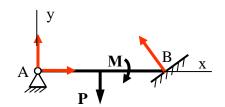
4.4. Перечень простых практических контрольных заданий (задач) к экзамену для оценивания результатов обучения в виде УМЕНИЙ. (ПК1.1-1.2;)

Экзаменационные задачи

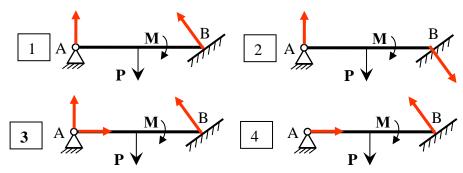
- 1. Однородная консольная горизонтальная балка весом P = 150 кг и длиной 6 м опирается на две вертикальные стены. Расстояние AB = 4 м. Определить давление на каждую из стен, принять ускорение g=10 м/с². (Ответ. $R_1=375$ H, $R_2=1125$ H).
- 2. Точка движется прямолинейно по закону $S = 2t^3 + 6t$. Найти ее среднее ускорение в промежутке между моментами $t_1 = 3$ c, $t_2 = 5$ c, а также ее истинное ускорение в момент $t_2 = 5$ c. (Ответ. $a_{cp} = 48$, $a_5 = 60$)
- 3. Нужно обработать на токарном станке поверхность шкива радиусом R = 175 мм с частотой 20 об/мин. Определить скорость резания. (Ответ. 0,366 м/с).
- 4. Тепловоз проходит закругление дороги, длиной 800 м за 50 сек. Радиус закругления по всей его длине постоянный и равен 400 м. определить скорость тепловоза и нормальное ускорение, считая его движение равномерным. (Ответ. v=16 м/c, $a_n=0.64$ м/c²)
- 5. В поднимающейся кабине лифта производится взвешивание тела на пружинных весах (сила тяжести тела G = 50 H), натяжение пружин весов (т.е. вес тела) = 51 H. Найти ускорение кабины. (Ответ. 0,196)
- 6. Какую работу производит человек, передвигая по горизонтальному полу на расстояние 4 м горизонтально направленным усилием ящик массой 50 кг? Коэффициент трения f = 0.4. (Ответ. 800 Дж)
- 7. Тяга, соединенная с вилкой посредством болта, нагружена силами. Определить напряжение смятия в головке тяги, если $P=32~\mathrm{kH}$, диаметр болта = $20~\mathrm{mm}$, $S=24~\mathrm{mm}$. (Ответ. $66,6~\mathrm{Mma}$)
- 8. Определить передаточное отношение многоступенчатого редуктора, если известно $U_{12}=3,145;\ U_{34}=2;\ U_{56}=5.$ (Ответ. 31,45).
- 9. Определить крутящий момент на ведущем валу, если известно, что $N_1=15$ кВт, $n_2=600$ мин, $U_{12}=3,14$. (Ответ. 750)
- 10. Определить передаточное отношение и делительный диаметр шестерни, если: $n_1 = 400$ мин⁻¹, $n_2 = 160$ мин⁻¹, m = 2, $Z_1 = 36$. (Ответ. 2,5; 72 мм)

4.5. Пример билета к экзамену

БИЛЕТ № 1

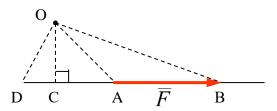

1. Материальная точка. Абсолютно твердое тело. Сила, её размерность в системе СИ. Силы внешние и внутренние.

- 2. Соединения в машинах. Сварные, резьбовые соединения.
- 3. Задача
- 4. Тест 6,12,18

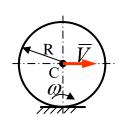

Комплексное тестирование

Тест 1- Тип ответа: Одиночный выбор, другие варианты указаны*

- 1. Векторная величина, являющаяся количественной мерой механического взаимодействия твердых тел, называется
 - 1. Моментом силы
 - 2. Силой
 - 3. Парой сил
 - 4. Системой сил
- 2. Система сил, действующих на балку АВ, показанную на рисунке, называется _____



- Сходящейся на плоскости 1.
- 2. Сходящейся в пространстве
- 3. Произвольная плоская
- 4. Произвольная пространственная
- 3. Реакции опор балки АВ правильно изображены на рисунке .


- 4. Момент силы \overline{F} относительно точки О равен

 - $1. F \cdot OA$ $3. F \cdot OB$
 - $2. F \cdot OC \qquad 4. F \cdot OD$

- 5. Плоский диск катится без скольжения в своей плоскости. Скорость точки C диска равна V. Угловая скорость ω диска равна .

- 1. $\frac{V}{R}$ 2. $\frac{V}{2R}$ 3. $\frac{V}{4R}$ 4. $\frac{V}{3R}$

6. Если при движении твердого тела все его точки имеют одинаковые траектории, скорости и ускорения, то это движение называется .

- 1. Вращательным 2. Поступательным
- 3. Плоскопараллельным 4. Сложным

7. Решение задач динамики методами статики возможно

- 1. По принципу возможных перемещений
- 2. С помощью теоремы Вариньона
- 3. По принципу Даламбера
- 4. С помощью второго закона Ньютона.

8. Какие материалы относят к пластичным?

- 1) материал с относительной продольная деформация меньше 5 % (δ <5%);
- 2) материал с относительная продольная деформация больше 5 % (δ >5%);
- 3) материал с относительным остаточным удлинением более 10%;
- 4) материалы, одинаково сопротивляющиеся при растяжении и сжатии.

9.Сформулируйте условие прочности при кручении

- 1) Касательные расчетные напряжения τ в скручиваемом брусе не должны превышать допускаемых значений [τ] (τ =T/W_p<[τ]);
- 2) Касательные напряжения прямо пропорциональны модулю сдвига G и относительному сдвигу γ (τ =G γ);
- 3) Нормальные напряжения прямо пропорциональны продольной силе N и обратно пропорциональны площади поперечного сечения A. (σ =N/A);
- 4) Угол закручивания вала не должен превышать допустимого значения

10. Как определяют внутренние силовые факторы?

- 1) Методом сечений;
- 2) Методом начальных параметров;
- 3) По принципу Сен-Венана;
- 4) Экспериментальным путем

11. Как формулируется закон Гука при растяжении(сжатии)?

- 1) Нормальные напряжения прямо пропорциональны относительной продольной деформации ε (σ=Εε);
- 2) Нормальные напряжения прямо пропорциональны продольной силе N и обратно пропорциональны площади поперечного сечения A. $(\sigma=N/A)$;

- 3) Нормальные расчетные напряжения σ в растянутом брусе не должны превышать допускаемых значений $[\sigma]$ (σ =N/A < $[\sigma]$);
- 4) Удлинение бруса пропорционально приложенной силе.

12. Какие внутренние силовые факторы действуют в сечении балки при поперечном изгибе?

- 1) Изгибающий момент М и поперечная сила Q;
- 2) Только крутящий момент Т.
- 3) Изгибающий момент М и продольная сила N.
- 4) Только изгибающий момент М.

13. Объект, изображенный на рисунке, является:

- 1. Деталью;
- 2. 2. Агрегатом;
- 3. 3. Механизмом;
- 4. 4. Узлом.

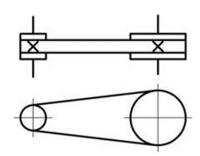
14. Общий КПД многоступенчатого привода равен:

- 1) сумме КПД всех ступеней;
- 2) произведению КПД всех ступеней;
- 3) среднему значению КПД всех ступеней.

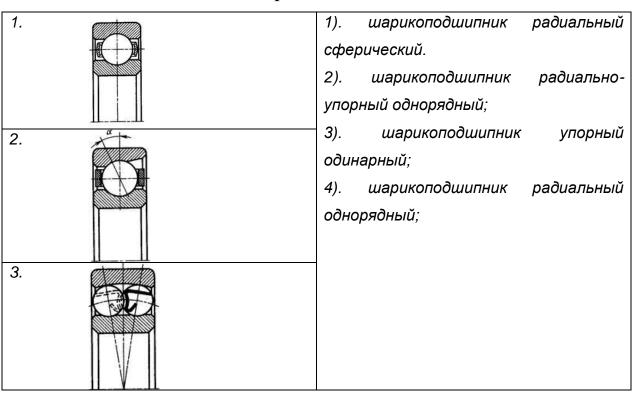
15. При использовании редуктора передаваемая мощность ...

- 1) увеличивается;
- 2) уменьшается;
- 3) не изменяется;
- 4) увеличивается если передаточное отношение больше единицы.

16. Передаточное отношение червячной передачи определяется ...


- 1) v_1/v_2 .
- 2) z_2/z_1
- 3) d_2/d_{1}
- 4) n_2/n_1

17. В червячных передачах с ручным приводом червячные колеса предпочтительнее изготавливать из...


- 1. Стали;
- 2. Чугуна;
- 3. Бронзы;
- 4. Алюминиевого сплава.

18. На рисунке показано условное обозначение механической передачи:

- 1. клиновым ремнем;
- 2. клиновым и плоским ремнем;
- 3. цепной
- 4. ременной без уточнения типа;
- 5. Фрикционной.

19. Установить соответствие изображения и типа подшипника. *

Ответ: 1-4, 2-2, 3-1

20. Основные критерии работоспособности валов - *
1.теплостойкость;
2. устойчивость;
3. прочность;
4. жесткость.
21. Основными достоинствами червячной передачи являются *
1. высокий к.п.д .;
2. возможность самоторможения
3. высокое передаточное отношение
4. высокая прочность витков червяка.
22. К группе соединительных деталей относятся следующие*
1. Ремень;
2. Зубчатая цепь;
3. Шестерня;
4. Заклепка;
5. Гайка.
23. Деталью общего назначения являются следующие*
1. поршень;
2. вал;
3. клапан;
4. болт.
A4 TC
24. К группе деталей передач относится следующая
1. Вал;
2. Шкив;
3. Роликоподшипник конический;
4. Муфта.
25. В каких передачах оси валов перекрещиваются?*
1) червячной;
2) конической;
3) волновой;
4) гипоидной.

Правильные ответы

Вопрос	1	2	3	4	5	6	7	8	9	10
Ответ	2	1	3	2	2	1	2	3	1	1
Вопрос	11	12	13	14	15	16	17	18	19	20
Ответ	1	1	1	2	2	2	2	4	1-4	3,4
									2-2	
									3-1	
Вопрос	21	22	23	24	25					
Ответ	2,3	4,5	2,4	2	1,4					

Разработчик:

Thys

преподаватель высшей квалификационной категории Кривобок Т.Д.

ФОС обсужден на заседании предметно-цикловой комиссии технических дисциплин протокол № 7 от «14» марта 2023 г.

Председатель ПЦК

(подпись)

Бирюкова Т.С. (И.О. Фамилия)

СОГЛАСОВАНО:

Внешний эксперт:

Косарева А.В.