СОЗДАНИЕ МАКРОСОВ-ФУНКЦИЙ В EXCEL

Кафедра информатики и математического моделирования

Учебно-методические указания к выполнению лабораторных работ по дисциплине «Информационно-коммуникационные технологии государственного и муниципального управления» для студентов направления 38.04.04 Государственное и муниципальное управление

Молодежный, 2024

Печатается по решению методической комиссии института экономики, управления и прикладной информатики Иркутского государственного аграрного университета им. А.А. Ежевского.

Протокол №5 от 25 января 2024 г.

Рецензенты: к.т.н., доцент кафедры информатики и математического моделирования Федурина Н.И.; доцент кафедры информатики и математического моделирования Белякова А.Ю.

Бендик Н.В. Учебно-методические указания к выполнению лабораторных работ по курсу «Информационно-коммуникационные технологии государственного и муниципального управления» студентов направления подготовки 38.04.04 Государственное и муниципальное управление [Текст] / Н.В. Бендик– Иркутск: Изд-во Иркутского ГАУ, 2020. – 15 с.

Указания предназначены для проведения лабораторных работ по дисциплине «Информационно-коммуникационные технологии государственного и муниципального управления» для направления «Государственное и муниципальное управление». Предлагается набор заданий к лабораторным занятиям и краткие методические указания к их выполнению. Целью лабораторных работ является использование макросов Excel для решения задач, часто встречающихся в экономических расчетах.

> © Бендик Н.В. 2024 © Иркутский ГАУ, 2024

<u>Лабораторная работа № 1</u>

Тема: Программирование макросов для функций, задаваемых с условиями.

Цель работы: Научиться использовать макросы *Excel* для упрощения вычислений.

Форма отчета: Выполнение индивидуального зачетного задания. Примеры выполнения лабораторной работы

Пример 1. Вычислить для произвольно заданного значения переменной *х* значение функции

 $y = \begin{cases} x^3 + 1, e c \pi u \ x \le 1, \\ \sin(x), e c \pi u \ 1 < x \le 3, \\ e^{-x}x, e c \pi u \ x > 3. \end{cases}$

Решение с помощью формулы *Excel*. Создадим новый файл в программе Excel. Оформление решения показано в таблице 1.

На Лист1 в ячейках А1 и В1 введем обозначения х и у.

Присвоим ячейке A2 имя х. Для этого выполним команду «Вставка — Имя — Присвоить — х».

Пусть значение переменной х равно 0,5. Запишем число 0,5 в ячейке A2, а значение функции у вычислим в ячейке B2. Для этого введем в B2 формулу

=ЕСЛИ(x<=1;x^3+1;ЕСЛИ(x<=3;SIN(x);ЕХР(-x)*x))

Таблица 1

	Α	В
1	Х	у
2	0,5	=ЕСЛИ(x<=1;x^3+1;ЕСЛИ(x<=3;SIN(x);EXP(-x)*x))

В результате вычисления в ячейке В2 появится значение 1,125.

Введем в ячейку A2 значение 1,5. Тогда в B2 появится значение 0,997494987. Если введем в ячейку A2 значение 3,5, то в B2 появится значение 0,105690842.

Решение с помощью макроса *Excel*. Создадим в программе *Excel* пользовательскую функцию у(х) для вычисления данной функции, пользуясь встроенным языком *Visual Basic*.

Приведем алгоритм создания пользовательской функции-макроса:

1) Выполним команду меню «Сервис — Макрос — Редактор Visual Basic». Откроется окно «Microsoft Visual Basic».

2) Выполним команду меню «Insert — Module» и введём текст программы-функции (Комментарий после апострофа вводить не надо)

Function y(x)	'Заголовок описания функции у(х)
If x <= 1 Then	' если x <= 1 то
$y = x^{3} + 1$	$y = x^{3} + 1$
ElseIf x <= 3 Then	' иначе если x <= 3 то
y = Sin(x)	y = Sin(x)
Else	'иначе
y = Exp(-x) * x	y = Exp(-x) * x
End If	'конец оператора если
End Function	' конец описания функции

Теперь в ячейках любого листа данной книги (файла) программы *Excel* можно в формулах использовать созданную функцию.

Например, введем в ячейки C2, C3 и C4 соответственно формулы =y(0,5), =y(1,5), =y(3,5). В этих ячейках получим значения 1,125, 0,997495, 0,105691.

Пример 2. Построить таблицу значений и график функции из примера 2 на отрезке $x \in [0,2]$ с шагом 0,2.

Решение с использованием макроса. Мы будем использовать макрос-функцию у(х), созданную в примере 1, поэтому откроем файл примера 1 и перейдем на Лист2.

В ячейках А1 и В1 введем обозначения х и у.

Введем в А2, А3 значения 0 и 0,2. Выделим ячейки А2:А3 и протянем маркер заполнения (правый нижний угол) до ячейки А12.

Введем в В2 формулу =y(A2). Протянем ячейку В2 маркером заполнения вниз до В12. Оформление решения показано в таблице 2.

Таблица 2

	Α	В
1	Х	У
2	0	1
3	0,2	1,008
4	0,4	1,064
5	0,6	1,216
6	0,8	1,512
7	1	2
8	1,2	0,932039
9	1,4	0,98545
10	1,6	0,999574
11	1,8	0,973848
12	2	0,909297

Выделим диапазон A1:B12 и щелкнем указателем мыши на панели инструментов ярлык «Мастер диаграмм». Выберем тип «Точечная» и кнопку «Готово».

Задания к лабораторной работе №1.

Построить таблицу значений и график данной функции в указанном диапазоне с заданным шагом. Вариант задания выбрать из таблицы 3.

Таблица 3

№ варианта	Функция	Отрезок	Шаг
1	$y = \begin{cases} x, e c \pi u \ x \le 1, \\ \sin(x+1), e c \pi u \ 1 < x \le 2, \\ e^{-x}, e c \pi u \ x > 2. \end{cases}$	[0; 3]	0,1
2	$y = \begin{cases} x, e c \pi u \ x \le 1, 5, \\ \sin^2(x), e c \pi u \ 1, 5 < x \le 2, \\ \sqrt{e^{-x}}, e c \pi u \ x > 2. \end{cases}$	[1; 3]	0,2
3	$y = \begin{cases} x, e c \pi u \ x \le 1, \\ \sin \sqrt{(x+1)}, e c \pi u \ 1 < x \le 2, \\ e^{-x}, e c \pi u \ x > 2. \end{cases}$	[0; 3]	0,3
4	$y = \begin{cases} x^3, e c \pi u \ x \le 1, \\ \ln(x+1), e c \pi u \ 1 < x \le 2, \\ e^{1-x}, e c \pi u \ x > 2. \end{cases}$	[1; 5]	0,2
5	$y = \begin{cases} x, e c \pi u \ x \le 1, 8, \\ \sin(\cos x), e c \pi u \ 1, 8 < x \le 2, 4, \\ e^{-x}, e c \pi u \ x > 2, 4. \end{cases}$	[0; 3]	0,1
6	$y = \begin{cases} \cos x, e c \pi u \ x \le 1, \\ \sin x, e c \pi u \ 1 < x \le 2, \\ e^x, e c \pi u \ x > 2. \end{cases}$	[2; 5]	0,25
7	$y = \begin{cases} 1 - \cos x, e c \pi u \ x \le 1, \\ \sin^2 x, e c \pi u \ 1 < x \le 2, \\ e^{\sqrt{x}}, e c \pi u \ x > 2. \end{cases}$	[3; 5]	0,25
8	$y = \begin{cases} \sqrt[3]{\cos x}, ecnu \ x \le 1, \\ \sin x, ecnu \ 1 < x \le 2, \\ e^x, ecnu \ x > 2. \end{cases}$	[0; 3]	0,1
9	$y = \begin{cases} \cos x, e c \pi u \ x \le 1, \\ \sqrt[4]{\sin x}, e c \pi u \ 1 < x \le 2, \\ e^x, e c \pi u \ x > 2. \end{cases}$	[1; 3]	0,4

10	$y = \begin{cases} \cos x, e c \pi u \ x \le 1, \\ 1 - \sin x, e c \pi u \ 1 < x \le 2, \\ \sqrt[5]{e^x}, e c \pi u \ x > 2. \end{cases}$	[0; 3]	0,05
11	$y = \begin{cases} \cos^{3} x, e c \pi u \ x \le 1, \\ \sin^{2} x, e c \pi u \ 1 < x \le 2, \\ e^{x}, e c \pi u \ x > 2. \end{cases}$	[1; 5]	0,4
12	$y = \begin{cases} \cos x, e c \pi u \ x \le 2, \\ \sin x, e c \pi u \ 2 < x \le 3, \\ e^x, e c \pi u \ x > 3. \end{cases}$	[0; 4]	0,2
13	$y = \begin{cases} \cos x, e c \pi u \ x \le 3, \\ \sin x, e c \pi u \ 3 < x \le 4, \\ e^x, e c \pi u \ x > 4. \end{cases}$	[2; 5]	0,3
14	$y = \begin{cases} \cos x, e c \pi u \ x \le 1, \\ \lg x, e c \pi u \ 1 < x \le 2, \\ t g \ x, e c \pi u \ x > 2. \end{cases}$	[0; 5]	0,4
15	$y = \begin{cases} \cos x, e c \pi u \ x \le 4, \\ \lg x, e c \pi u \ 4 < x \le 5, \\ t g \ x, e c \pi u \ x > 5. \end{cases}$	[1; 6]	0,5
16	$y = \begin{cases} 1+x^3, e c \pi u \ x \le 1, \\ \sin(x^2+1), e c \pi u \ 1 < x \le 2, \\ e^{1-x}, e c \pi u \ x > 2. \end{cases}$	[0; 3]	0,1
17	$y = \begin{cases} 1,78+x^3, e c \pi u \ x \le 1,5, \\ \sin(x^2+3,14), e c \pi u \ 1,5 < x \le e^{1-\cos x}, e c \pi u \ x > 2. \end{cases}$	[1; 3] ≤ 2,	0,2
18	$y = \begin{cases} 1, 7 + x, e c \pi u \ x \le 1, \\ \cos^2(x^2 + 1), e c \pi u \ 1 < x \le 2, \\ e^{1 - x}, e c \pi u \ x > 2. \end{cases}$	[0; 3]	0,3
19	$y = \begin{cases} x^3, e c \pi u \ x \le 1, \\ \sin(x^2), e c \pi u \ 1 < x \le 2, \\ e^{1-x}, e c \pi u \ x > 2. \end{cases}$	[0; 5]	0,2

20	$(1-2x^3, ecnu \ x \le 1,$	[0; 3]	0,1
	$y = \begin{cases} \sin(4x^2 + 1), e c \pi u \ 1 < x \le 2, \end{cases}$		
	$e^{\cos x + 1 - x}$, если $x > 2$.		

Лабораторная работа № 2

Тема: Программирование макросов для функций, параметрами и/или значениями которых являются массивы.

Цель работы: Научиться использовать макросы *Excel* для упрощения вычислений с матрицами и векторами.

Форма отчета: Выполнение индивидуального зачетного задания.

Пример выполнения лабораторной работы

Пример 3. Вычислить таблицу значений вектор-функции U(t) = U(x, y, z), где $x = x(t) = t^2$, $y = y(t) = \sin t$, $z = z(t) = \cos t$, для значений переменной t = 0; 0, 1; ..., 1.

Решение с помощью макроса. Создадим макрос-функцию U(t), которая вычисляет значение данной вектор-функции.

1) Выполним команду меню «Сервис — Макрос — Редактор Visual Basic». Откроется окно «Microsoft Visual Basic».

2) Выполним команду меню «Insert — Module» и введём текст следующей программы-функции

 Option Base 1
 ' Нижнее значение индекса в массивах равно 1

 Function U(t)
 ' Описание вектора из трех элементов

 $x = t \land 2: uu(1) = x$ ' вычисление компонент вектор-функции

 y = Sin(t): uu(2) = y ' сов(t): uu(3) = z

 U = uu
 ' присваивание имени U функции вектора uu

End Function

3) Перейдем из редактора *Visual Basic* в Excel и введем в ячейках A1:D1 обозначения, как показано в табл. 4.

Таблица 4

	Α	В	С	D
1	t	X	У	Z
2	0	0	0	0
3	0,1	0	0,01	0,099833
4	0,2	0	0,04	0,198669
5	0,3	0	0,09	0,29552
6	0,4	0	0,16	0,389418
7	0,5	0	0,25	0,479426
8	0,6	0	0,36	0,564642
9	0,7	0	0,49	0,644218
10	0,8	0	0,64	0,717356
11	0,9	0	0,81	0,783327
12	1	0	1	0,841471

Введем в ячейки A2, A3 значения 0 и 0,1. Выделим ячейки A2:A3 и маркером заполнения протянем вниз до A12.

Выделим ячейки B2:D2, введем формулу =U(A2) и удерживая нажатыми клавиши Ctrl и Shift нажмем Enter. В ячейках B2:D2 появятся числовые значения.

Выделим ячейки B2:D2 и маркером заполнения протянем вниз до строки B12:D12.

Пример 4. Вычислить суммы элементов строк матрицы, содержащей 4 строки и 3 столбца (табл. 5).

Таблица 5

1	-1	9
2	2	4
3	3	1
4	5	3

Решение с помощью встроенных функций *Excel.* Создадим файл программы *Excel*.

Запишем элементы данной матрицы в диапазоне А1:С4 (табл. 6).

В ячейку D1 введем формулу =СУММ(А1:С1).

Выделим ячейку D1 и протянем маркером заполнения вниз до ячейки D4. В столбце D1:D4 получим суммы элементов соответствующих строк матрицы.

Решение с помощью макроса. Создадим макрос-функцию $Sum_str(x)$, которая для заданной матрицы x, содержащей M строк и N столбцов, вычисляет вектор-столбец из M элементов, содержащий суммы элементов соответствующих строк матрицы.

1) Выполним команду меню «Сервис — Макрос — Редактор Visual Basic». Откроется окно «Microsoft Visual Basic».

2) Выполним команду меню «Insert — Module» и введём текст следующей программы-функции

```
Option Base 1

Function Sum_str(x)

Dim y()

Dim M As Integer, N As Integer

M = x.Rows.Count

N = x.Columns.Count

ReDim y(M)

For i = 1 To M:

y(i) = 0: For j = 1 To N: y(i) = y(i) + x(i, j): Next j

Next i

Sum_str = Application.Transpose(y)

End Function
```

3) Выделим диапазон ячеек E1:E4, введем формулу=Sum_str(A1:C4) и удерживая нажатыми клавиши Ctrl и Shift нажмем Enter. В ячейках E1:E4 появятся числовые значения, совпадающие со значениями в D1:D4.

Таблица 6

	Α	В	C	D	Ε
1	1	-1	9	9	9
2	2	2	4	8	8
3	3	3	1	7	7
			3	1	1
4	4	5		2	2

Задания для самостоятельной работы.

Написать макрос-функцию для вычисления

- 1. Столбца из произведений элементов строк матрицы.
- 2. Строки из произведений элементов столбцов матрицы.
- 3. Столбца из максимальных элементов строк матрицы.
- 4. Столбца из минимальных элементов строк матрицы.
- 5. Строки из максимальных элементов столбцов матрицы.
- 6. Строки из минимальных элементов столбцов матрицы.
- 7. Суммы положительных элементов матрицы.
- 8. Суммы отрицательных элементов матрицы.
- 9. Числа положительных элементов матрицы.
- 10. Числа отрицательных элементов матрицы.
- 11. Суммы поддиагональных элементов квадратной матрицы.
- 12. Числа элементов квадратной матрицы, по модулю меньших единицы.
- 13. Числа элементов вектора, по модулю меньших единицы.
- 14. Числа элементов вектора, по модулю больших единицы.
- 15. Вектора из диагональных элементов квадратной матрицы.
- 16. Матрицы, элементы которой задаются формулой $x_{ij} = i + j$.

- 17. Вектора, элементы которого задаются формулой $x_i = i$.
- 18. Матрицы, элементы которой задаются формулой $x_{ij} = 2i + 5j^2$.
- 19. Вектора, элементы которого задаются формулой $x_i = i^2$.
- 20. Матрицы, элементы которой задаются формулой $x_{ij} = i * j$.

Рекомендуемая литература

1. Балдин, Константин Васильевич. Информационные системы в экономике [Электронный учебник] : учеб. / К. В. Балдин, В. Б. Уткин. -Москва: Дашков и К, 2017. - 395 с. Режим доступа: https://e.lanbook.com/book/93391

 Богомолова, М. А.. Информационные системы и технологии [Электронный учебник] : учеб. пособие / Богомолова М.А.,Коныжева Н.В.. - Самара: Изд-во ПГУТИ, 2012. - 111 с.

3. Варфоломеева, Александра Олеговна. Информационные системы предприятий : учеб. пособие для студентов вузов, обучающихся по направлению "Прикладная информатика" и другим экон. спец. : рек. Учеб.-метод. об-нием / А. О. Варфоломеева, А. В. Коряковский, В. П. Романов, 2014. - 282 с.

4. Информационные системы и технологии в экономике и управлении : учеб. для вузов по спец. 080507 (061100) "Менеджмент организации" : допущено Советом Учеб.-метод. об-ния вузов / В. В. Трофимов [и др.]; под ред. В. В. Трофимова. - М.: Юрайт, 2012. - 521 с..- (Бакалавр. Базовый курс)

5. Коноплёва И.А. Информационные технологии [Электронный ресурс]: электрон. учеб. для вузов / И. А. Коноплёва, О. А. Хохлова, А. В. Денисов, 2009. - 1 эл. опт. диск (CD-ROM)

б. Титовская Н. В. Информационные технологии обеспечения конфиденциальности и сохранности данных [Электронный ресурс]
[Электронный учебник]: учебное пособие / Титовская Н. В., Титовский С. Н.. - КрасГАУ, 2018. - 178 с.Режим доступа: https://e.lanbook.com/book/130127

14

7. Федотова, Елена Леонидовна. Информационные технологии и системы : учеб. пособие для вузов : рек. Учеб.-метод. об-нием / Е. Л. Федотова, 2009. - 351 с.

 Шашкова, Ирина Геннадьевна. Информационные системы и технологии [Электронный учебник] /И.Г.Шашкова, В.С.Конкина, Е.И. Машкова. - : 2013. - 541 с.

9. Ясенев В.Н. Информационные системы и технологии в экономике [Электронный ресурс]: учеб. пособие для вузов / В. Н. Ясенев, 2011. - 1эл. опт. Диск