МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ имени А.А. ЕЖЕВСКОГО

Институт экономики, управления и прикладной информатики Кафедра информатики и математического моделирования

Методические рекомендации

по дисциплине «Математическое моделирование» для студентов специальности 38.05.01 Экономическая безопасность

Молодежный,2020

УДК 681.3

Печатается по решению методического совета Иркутского ГАУ протокол № ____ от «____»____2020г.

Федурина Н.И. Методические рекомендации по математическому моделированию для студентов специальности 38.05.01 Экономическая безопасность /Федурина Н.И. – Иркутск, 2020. – 52 с.

Рецензент: к.э.н., доцент кафедры ФГБОУ ВО «Иркутский государственный университет путей сообщения» Либенсон И.Р.

к.т.н., доцент кафедры информатики и математического моделирования Иркутского ГАУ Бузина Т.С.

В методических рекомендациях определены общие принципы построения математических моделей и их классификация. Рассмотрены задачи линейного программирования, специальные задачи линейного программирования, приведены примеры практического решения задач линейного программирования с использованием Microsoft Excel и варианты задач для самостоятельной работы.

Работа предназначена для специальности 38.05.01 Экономическая безопасность. Кроме того, она может быть полезна студентам технических специальностей.

© Н.И. Федурина, 2020 © Издательство Иркутский ГАУ, 2020

Содержание

Введение	
1.1 Сложение матриц	5
1.2 ТРАНСПОНИРОВАНИЕ МАТРИЦЫ	5
1.3 ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИЦЫ	6
1.4 Умножение матриц	7
1.5 Умножение матрицы на число	
1.6 Сложение матриц	9
1.7 Вычисление определителя матрицы	
1.8 Системы линейных алгебраических уравнений	
2.1 Оптимизация	
2.2 Условный экстремум	
2.3 МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ	
2.4 Системы нелинейных алгебраических уравнений	
3. ПРОГНОЗИРОВАНИЕ ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ	
ПРИЛОЖЕНИЕ	

Введение

В данных методических указаниях, целью которых является изучить и научиться пользоваться важной составной частью MS Excel, такой как Вставка формул, Подбор параметра, Поиск решения, все эти функции MS Excel облегчают задачу математикам, бухгалтерам, специалистам В различных областях. Так же мы более глубже знакомимся со стандартными функциями MS Excel. Помимо этого мы изучаем и учимся решать средствами MS Excel стандартные задачи линейного программирования. Методические указания написаны и структурированы таким образом, чтобы их можно было использовать для изучения математических моделей и некоторых функций MS Excel. В работе показан каждый шаг по выполнению каждой из задач линейного программирования и функций, который так же иллюстрируется примером, который наглядно показывает решение определенных задач.

Специалист для которого MS Excel является именно тем средством которое позволяет облегчить и ускорить его работу, должен знать и уметь использовать в повседневной работе новейшие экономико-математические методы и модели, предлагаемые новыми прикладными программами.

Использование компьютерных технологий освобождает от рутинной вычислительной работы по реализации математических методов и позволяет сконцентрировать внимание не на алгоритме вычисления, а непосредственно на анализе результатов моделирования, что заметно повышает «коэффициент полезного действия» затраченного времени. Совершенно очевидно, что эффективность изучения предмета становится существенно выше, если есть возможность быстро «проиграть» варианты моделей, изменить их параметры, сравнить в числовой и графической форме результаты исследований.

1.1 Сложение матриц

Задание №1

Для сложения двух матриц одинаковой размерности следует выполнить следующую последовательность действий:

- 1. Задать две исходных матрицы.
- 2. Отметить место для матрицы-результата.
- 3. В выделенном месте под результат поставить знак равенства и записать сумму так, как показано на рис.1.

	A	В	С	D	E	F	G	Н		J	K
1											
2											
3											
4			Матрица и	۹.					Матрица І	B	
5	78	45	455	78	78		48	784	125	126	98
6	45	59	478	56	98		54	155	521	158	85
7	123	12	42	85	458		96	456	652	145	68
8	12	48	62	21	74		231	874	123	147	32
9											
10											
11					Матрица и	A+B					
12											
13			=A5:E8+0	35:K8							
14											
15											
16											
17											

Рисунок 1

4. Завершить выполнение работы нажатием клавиш Shift/Ctrl/Enter (рис.2.)

	С	D	E	F	G	Н		J	K	L	M
1											
2			Матрица /	4					Матрица I	В	
3	78	45	455	78	78		48	784	125	126	98
4	45	59	478	56	98		54	155	521	158	85
5	123	12	42	85	458		96	456	652	145	68
6	12	48	62	21	74		231	874	123	147	32
7											
8						Сумма ма	атриц А и І	3			
9											
10				126	829	580	204	176			
11				99	214	999	214	183			
12				219	468	694	230	526			
13				243	922	185	168	106			
14											

Рисунок 2.

1.2 Транспонирование матрицы

Работу с матричной функцией ТРАНСП следует выполнять в следующем порядке:

- 1. Задать исходную матрицу.
- 2. Отметить место для матрицы-результата.

3. Обратиться к мастеру функций, найти функцию **ТРАНСП** и выполнить постановку задачи (рис.3.).

	E	F	G	Н		J	К	L	M	N	0	
8				Сумма ма	атриц А и В	3						
9												
10		126	829	580	204	176		10:J13)				
11		99	214	999	214	183						
12		219	468	694	230	526						
13		243	922	185	168	106						
14	ΓTP	АНСП										
15												
16				масси	B F10:513				<u> </u>	126;829;58	30;204;1	
17												
18									= {:	126;99;219	9;243:829;	21
19	Воз	вращает т	ранспонир	ованный м	чассив.							
20												
21												
22				Масси	в транспоі	нируемый	массив н	а рабочем	листе или	на листе м	чакросов.	
23						1,7,00,000						

Рисунок 3.

4. Завершить выполнение работы нажатием клавиш Shift/Ctrl/Enter (рис.4.)

	E	F	G	Н		J	K	L	М	N	0
8				Сумма ма	атриц А и I	В			Транспон	ированная	і матрица
9											
10		126	829	580	204	176		126	99	219	243
11		99	214	999	214	183		829	214	468	922
12		219	468	694	230	526		580	999	694	185
13		243	922	185	168	106		204	214	230	168
14								176	183	526	106
15											
16											

Рисунок 4

1.3 Вычисление обратной матрицы

Задание №4

Теперь найдем матричное выражение: **Y**=(**FH**⁻¹)/**29**+**K**. Посчитаем определитель полученной матрицы. Поиск решения разобьем на ряд шагов:

1. Найдем матрицу обратную к матрице Н.

2.Умножим матрицы \mathbf{F} и \mathbf{H}^{-1} .

3. Результат поделим на 29.

4. Сложим полученную матрицу с матрицей К.

5. Найдем определитель полученной матрицы.

Работу с матричной функцией МОПРЕД следует выполнять в следующем порядке:

1.Задать исходную матрицу.

2. Отметить место для матрицы-результата.

3.Обратиться к мастеру функций, найти функцию МОПРЕД и выполнить постановку задачи (рис.5.).

	МОБР	•	- × 🗸	= =MC	ОБР(А5:	E9)						
	Α	В	С	D	E	F	G	Н	1	J	K	L
1												
2												
3												
4			Матрица I	Η		LIGER						
5	78	45	455	45	41							
6	45	59	478	45	65)			D.	ассив 🗚	5:E9		
- 7 -	123	12	42	69	23							
8	14	41	14	65	21							
9	19	87	40	55	85	Возвраш	ает обраті	ную матри	цу (матри	ца хранито	я в масси	ве).
10								· ·		• •		· ·
11												
12	(A5:E9)							-		×		
13								14	ассив чи	словои ма	ссив с рав	ным ко
14									ди	апазон или	и массив.	
15												
16						2					10407060	
17									зна	чение:0,0	1948/863	
10												

5. Завершить выполнение работы нажатием клавиш Shift/Ctrl/Enter (рис.6).

	L19		-	-		
	A	В	С	D	E	F
1						
2						
З						
4			Матрица Н	-1		
5	78	45	455	45	41	
6	45	59	478	45	65	
7	123	12	42	69	23	
8	14	41	14	65	21	
9	19	87	40	55	85	
10						
11						
12	0,01949	-0,01909	0,00273	-0,00878	0,00663	
13	0,06563	-0,06238	-0,02249	0,00367	0,02123	
14	-3,6E-05	0,00231	-0,00062	0,00053	-0,00171	
15	-0,02842	0,02694	0,00809	0,01961	-0,01392	
16	-0,05312	0,0496	0,01747	-0,01473	-0,00163	
17						
10					1	1

1.4 Умножение матриц

Надо умножить матрицы H^{-1} и **F**. Это умножение возможно, так как число столбцов матрицы H^{-1} совпадает с числом строк матрицы **F**.

Выполним следующую последовательность действий:

- 1. Зададим матрицу **F**.
- 2. Отметим место под матрицу-результат.
- 3. Обратимся к мастеру функций, найдем функцию **МУМНОЖ** и выполним постановку задачи так, как показано на рис.13. Н⁻¹

	МУМНО)	ж	• × 🗸	= =M)	инож	(A5:E9;0	G5:K9)				
	A	В	С	D	E	F	G	Н		J	K
3											
4			Матрица 1	1/H					Матица F		
5	0,01949	-0,01909	0,00273	-0,00878	0,00663		87	45	45	45	41
6	0,06563	-0,06238	-0,02249	0,00367	0,02123		54	74	20	45	65
7	-3,6E-05	0,00231	-0,00062	0,00053	-0,00171		32	11	42	54	15
8	-0,02842	0,02694	0,00809	0,01961	-0,01392		45	55	14	15	45
9	-0,05312	0,0496	0,01747	-0,01473	-0,00163		48	98	156	55	45
10											
11											
12					Матрица I	F*(1/H)					
13			G5:K9)								
14											
15											
16											
1/							,				
18		к							-		
19			Ma	AS ASSACE	5:E9			.	= {0,0194	487862765	45
20				- 65					I		
			Ma	ассив2 G5	5:K9			-	= {87;45	;45;45;41:	54
Пде									= {0,6749	942681322	317;-0
	Возвращ	ает произ	ведение м	атриц (ма:	трицы хран	нятся в ма	іссивах).				

Рисунок 7

В качестве массива 1 указываем диапазон адресов матрицы H^{-1} , а в качестве массива 2 – диапазон адресов матрицы F. Для получения результата нажмем одновременно клавиши Shift/Ctrl/Enter (рис.8.).

	A	В	С	D	E	F	G	Н	I	J	K
3											
4			Матрица 1	1/H					Матица F		
5	0,01949	-0,01909	0,00273	-0,00878	0,00663		87	45	45	45	41
6	0,06563	-0,06238	-0,02249	0,00367	0,02123		54	74	20	45	65
-7	-3,6E-05	0,00231	-0,00062	0,00053	-0,00171		32	11	42	54	15
8	-0,02842	0,02694	0,00809	0,01961	-0,01392		45	55	14	15	45
9	-0,05312	0,0496	0,01747	-0,01473	-0,00163		48	98	156	55	45
10											
11											
12					Матрица I	F*(1/H)					
13			0,67494	-0,33912	1,52082	0,39825	-0,49777				
14			2,80533	0,37164	4,12347	0,15404	-0,58104				
15			0,04348	0,02385	-0,24101	-0,01729	0,08616				
16			-0,54539	0,51733	-2,29779	-0,10168	0,96269				
17			-2,12507	0,5024	-1,12493	0,47431	0,57193				
18											

Рисунок 8

1.5 Умножение матрицы на число

Для умножения матрицы на число следует выполнить следующие действия:

- 1. Задать исходную матрицу.
- 2. Отметить место для матрицы-результата.

3. В выделенном под результат месте электронной таблицы записать произведение так, как показано на рис.9.

	A	В	С	D	E	F	G	Н
12					Матрица Г	=*(1/H)		
13			0,67494	-0,33912	1,52082	0,39825	-0,49777	
14			2,80533	0,37164	4,12347	0,15404	-0,58104	
15			0,04348	0,02385	-0,24101	-0,01729	0,08616	
16			-0,54539	0,51733	-2,29779	-0,10168	0,96269	
17			-2,12507	0,5024	-1,12493	0,47431	0,57193	
18								
19								
20								
21			=C13:G17	/29				
22								
23								
24								
25								
26								

Рисунок 9

4. Завершить выполнение работы нажатием клавиш Shift/Ctrl/Enter (рис.10.).

	A	В	С	D	E	F	G	Н
12					Матрица І	F*(1/H)		
13			0,67494	-0,33912	1,52082	0,39825	-0,49777	
14			2,80533	0,37164	4,12347	0,15404	-0,58104	
15			0,04348	0,02385	-0,24101	-0,01729	0,08616	
16			-0,54539	0,51733	-2,29779	-0,10168	0,96269	
17			-2,12507	0,5024	-1,12493	0,47431	0,57193	
18								
19								
20								
21			0,02327	-0,01169	0,05244	0,01373	-0,01716	
22			0,09674	0,01282	0,14219	0,00531	-0,02004	
23			0,0015	0,00082	-0,00831	-0,0006	0,00297	
24			-0,01881	0,01784	-0,07923	-0,00351	0,0332	
25			-0,07328	0,01732	-0,03879	0,01636	0,01972	
26								

Рисунок 10

1.6 Сложение матриц

Для сложения двух матриц одинаковой размерности следует выполнить следующую последовательность действий:

1.Задать две исходные матрицы.

2.Отметить место для матрицы-результата.

3.В выделенном под результат месте электронной таблицы записать сумму так, как показано на рис.11.

	МУМНО)	ж	· × 🗸	= =A2	1:E25+0	921:K25					
	A	В	С	D	E	F	G	Н	I	J	K
20			Матрица(I	F*(1/H)/29)					Матрица I	<	
21	9,4E-05	-0,0029	0,02743	-0,00943	-0,00326		8	26	45	45	41
22	-0,04688	-0,10645	0,0234	-0,02504	0,02527		4	65	21	78	47
23	-0,00376	-0,0027	-0,00223	0,00228	0,00101		132	132	85	12	15
24	0,0678	0,05239	-0,00637	0,01015	0,01216		; 86	41	21	15	45
25	0,02533	0,11673	-0,00828	0,04688	-0,01157		48	98	41	66	54
26											
27					Матрица(I	⁼ *(1/H)/29))+К				
28				=A21:E25	+G21:K25						
29											
30											
31											
32											

Рисунок 11.

4.Завершить выполнение работы нажатием клавиш Shift/Ctrl/Enter (рис.12.).

	A	В	С	D	E	F	G	Н		J	K
20			Матрица(Р	F*(1/H)/29)	1				Матрица I	<	
21	9,4E-05	-0,0029	0,02743	-0,00943	-0,00326		8	26	45	45	41
22	-0,04688	-0,10645	0,0234	-0,02504	0,02527		4	65	21	78	47
23	-0,00376	-0,0027	-0,00223	0,00228	0,00101		132	132	85	12	15
24	0,0678	0,05239	-0,00637	0,01015	0,01216		86	41	21	15	45
25	0,02533	0,11673	-0,00828	0,04688	-0,01157		48	98	41	66	54
26											
27					Матрица(Р	F*(1/H)/29)	+K				
28				8,00009	25,9971	45,0274	44,9906	40,9967			
29				3,95312	64,8936	21,0234	77,975	47,0253			
30				131,996	131,997	84,9978	12,0023	15,001			
31				86,0678	41,0524	20,9936	15,0102	45,0122			
32				48,0253	98,1167	40,9917	66,0469	53,9884			
33											

Рисунок 12

1.7 Вычисление определителя матрицы

Для вычисления определителя матрицы сформируем лист электронной таблицы:

1. Определим исходную матрицу.

2. Определим место под результат.

3.Обратимся к мастеру функций, найдем функцию МОПРЕД, выполним постановку задачи (рис.13.).

	MORPE/	ц т	× 🗸 =	=МОГ	ІРЕД(А2	28:E32)				
	A	В	С	D	E	F	G	Н	1	J
27		Матрица Ү=	(F*(1/H)/29)+К						
28	8,00009	25,997098	45,0274	44,9906	40,9967					
29	3,95312	64,893555	21,0234	77,975	47 ,0253					
30	131,996	131,9973	84,9978	12,0023	15,001					
31	86,0678	41,052388	20,9936	15,0102	45,0122					
32	48,0253	98,116729	40,9917	66,0469	53,9884					
33										
34										
35		A28:E32)								
36	⊢МОПРЕД	I								
37										
38	Массив Адотед = {8,00009442455746									
-39										
40	= -278491180,7									
41	возвращ	ает определі	итель матр	оицы (матр	оица храни	ится в мас	сиве).			
42										

Рисунок 13

4.Щелкнув по кнопке ОК, получим значение определителя (рис.14.).

	B35	-	=	=MOL	РЕД(А2	8:E32)
	A	В	С	D	Е	F
27		Матрица Ү=	(F*(1/H)/29	9)+К		
28	8,00009	25,997098	45,0274	44,9906	40,9967	
29	3,95312	64,893555	21,0234	77,975	47,0253	
30	131,996	131,9973	84,9978	12,0023	15,001	
31	86,0678	41,052388	20,9936	15,0102	45,0122	
32	48,0253	98,116729	40,9917	66,0469	53,9884	
33						
34						
35		-278491181				

Рисунок 14

1.8 Системы линейных алгебраических уравнений

Задание №5

Решение систем линейных алгебраических уравнений всегда занимало математиков и для их решения было разработано немало численных методов, подразделяющихся на прямые и итерационные.

В EXCEL задача получения решения СЛАУ решается с помощью вышеописанных матричных функций, для чего исходную систему надо представить в виде матричного уравнения.

Рассмотрим последовательность действий для получения решения СЛАУ на конкретном примере.

 $\begin{cases} -12X_1 + 12X_2 + 23X_3 + 6X_4 = 120 \\ -3X_1 + 0.3X_2 - 3X_3 + X_4 = -25 \\ -67X_1 - 3X_2 - 51X_3 - 73X_4 = 536 \\ -91X_1 - 6X_2 + 4X_3 - 13X_4 = -316 \end{cases}$ (5)

Для того, чтобы система (5) имела единственное решение необходимо и достаточно, чтобы определитель системы, составленный из коэффициентов при переменных X₁, X₂, X₃, X₄, не был равен нулю.

Рассчитаем определитель системы, пользуясь функцией МОПРЕД (рис.15.). Рассчитанное значение определителя системы равно –12. Оно не равно нулю и, следовательно, можно продолжать процесс поиска решения.

Из линейной алгебры известна матричная запись системы уравнений и матричное представление решения. Перепишем систему (5) в виде

тогда матричное решение уравнения выглядит так:

X=А⁻¹В, где А⁻¹ – матрица обратная к исходной.

	A	В	С	D	E	F	Н		J	K
1			Матриц	а коэффі	щиетнтов					
2		-12	12	23	6		Столбег	(свободн	ных члено	96
3		-3	0,3	-3	1		120			
4		-67	-3	-51	-73		-25			
5		-91	-6	4	-13		536			
6							-316			
7					Определите	пь матр	ицы			
8					373908,6					
9			Обратна	я матри	ца		Столбец неизвестных членов			енов
10		-0,00329	-0,05009	0,00072	-0,009437868		4,22868			
11		0,0671	0,24563	0,01369	-0,027027996		17,792			
12		0,00818	-0,20012	-0,00351	0,008105189		1,54024			
13		-0,00546	0,17569	-0,01247	0,004110363		-13,0308			
14										
15										

Рисунок 15

Результат, указанный на рис.15 можно получить, выполнив следующие действия:

1.Вычислить определитель и выяснить, имеет ли система единственное решение.

2.Вычислить матрицу обратную к исходной.

3.Найти произведение обратной матрицы и вектор столбца свободных членов.

Глава 2 Поиск решения...

2.1 Оптимизация

Почти любую ситуацию, встречающуюся в личной, деловой или общественной жизни можно охарактеризовать как ситуацию принятия решения. Для задач принятия существенными являются следующие общие элементы:

- 1. Множества переменных и параметров. В их число входят:
- *множество разрешающих или эндогенных переменных*, значения которых рассчитываются лицом, принимающим решение
- *множество внешних или экзогенных переменных*, значения которых не контролируются лицом, принимающим решение
- *множество параметров*, которые так же не контролируются и считаются в условиях задачи вполне определенными.
- 2. Модель множество соотношений, связывающих все переменные и параметры.
- 3. Целевая функция функция, значение которой зависит от значений эндогенных переменных. Эта функция позволяет лицу, принимающему решения оценивать варианты.

4. Численные методы – методы, с помощью которых можно систематически оценивать результаты различных решений.

Получение решения на модели, в конечном итоге, сводится к математической задаче нахождения некоторых вещественных значений эндогенных переменных, которые оптимизируют целевую функцию.

Если до недавнего времени все четыре перечисленные выше элемента ложились на лицо принимающее решение, то теперь умение пользоваться встроенными функциями EXCEL снимает наиболее утомительный пункт, а именно, применения численных методов, и делает исследование задач принятия решений более эффективными, так как теперь для решения одной и той же задачи можно быстро просмотреть различного вида постановки, в том числе и отличающиеся друг от друга по структуре.

2.2 Условный экстремум

Задание №6

EXCEL обладает мощным встроенным средством для нахождения экстремальных значений функции одной или нескольких переменных. Для одно-экстремальных функций можно найти безусловный глобальный экстремум. Для многоэкстремальных функций можно найти условный локальный экстремум.

Для функций одной переменной поиск экстремума возможен как на всей числовой оси, так и на некотором интервале. Поиск на интервале уже можно считать поиском условного экстремума функции, т.к. появляются ограничения на изменение значений аргумента.

Рассмотрим примет поиска условного экстремума функции. Найти минимум и максимум функции Y=X⁵ (6)

на интервале [-1,1] и построить график.

График функции показан на рис.16.

Для поиска условного экстремума функции сформируем лист электронной таблицы, как показано на рис. 16. Функцию (6) запишем в клетку A2, где вместо переменной X следует указать адрес ячейки A1, которая содержит начальное приближение экстремума.

Для поиска минимума следует выполнить следующую последовательность действий:

1. Выполнить команду Сервис/Подбор параметра... (получим лист электронной таблицы, как показано на рис.17).

2. Заполнить диалоговое окно (рис.18).

Поиск решения	? ×
Установить целевую ячейку: Вавной: Омаксимальному значению Означению: О Оминимальному значению	<u>В</u> ыполнить Закрыть
Измендя ячейки: 	Параметры Восс <u>т</u> ановить

Рисунок 18

- 2.1 Кликнуть левой клавишей мыши в поле, переместить указатель мыши и кликнуть на ячейке с формулой.
- 2.2Выбрать поле **Min**.
- 2.3В поле ввести адреса ячеек, значения которых будут варьироваться в процессе поиска решения. В нашем случае это клетка A1.

2.4 Кликнуть левой клавишей мыши в поле и затем на кнопке **Добавить**, откроем диалоговое окно (рис.2.2), которое заполняем, так как показано на рисунке. Так же добавляем второе ограничение.

После щелчка на кнопке **ОК** получим решение поставленной задачи. В клетке A1 находится значение переменной X равное, при котором функция (6) достигает минимального значения на интервале [-1,1].

Для поиска максимума следует выполнить ту же последовательность действий, выбрав при этом поле **Мах**. Функция (6) достигает максимального значения на интервале при значении переменной, равном (рис18).

2.3 Математическое программирование

Анализируя возможности, можно заметить, что он применим для решения достаточно широкого класса задач математического программирования.

Если задачу принятия решений в области управления можно сформулировать в виде оптимизации вещественной функции п неотрицательных вещественных переменных подчиненных т произвольным ограничениям:

 $\max f(x_1, x_2, ..., x_n)$ при g1 $(x_1, x_2, ..., x_n) \le 0$ g2 $(x_1, x_2, ..., x_n) \le 0$

g3 ($x_1, x_2, ..., x_n$) ≤ 0

то позволяет найти решение такой задачи, которая в формальной подстановке может быть задачей:

1. линейного программирования (когда целевая функция и все ограничения - линейны)

2. нелинейного программирования (когда, либо целевая функция, либо хотя бы одно из ограничений - нелинейны)

3.целочисленного программирования (когда ограничение целочисленности налагается на все переменные)

4. частично целочисленного программирования (когда ограничение целочисленности налагается на часть переменных)

2.3.1 Линейное программирование

Задание №7

Решить задачу линейного программирования с помощью **Поиска решения...**, показать графически область допустимых решений и целевую функцию. Найдем максимум функции $F = -2x_1 + 2x_2 \rightarrow max$ при ограничениях:

 $x_{1} + x_{2} \ge l$ $-5x_{1} + x_{2} \ge 0,3$ $x_{1} - x_{2} \le l$ $x_{1} + x_{2} \le 6$ $x_{1} \ge 0$ $x_{2} \ge 0.$

Сформируем страницу электронной таблицы и постановку задачи линейного программирования в диалоговом окне **Поиск решения...**

	A	В
1	x1	x2
2	0,83333333333333	0,16666666666666
3		
4	целевая функция	
5	=-2*A2+2*B2	
6		
-7	ограничения	
8	=A2+B2	
9	=A2-5*B2	
10	=3*A2-B2	
11	=A2+B2	
12	=A2	
13	=B2	

Рисунок 19

После выполнения поставленной задачи получаем следующие значения

A	В	С
×1	x2	
0,8333	0,1667	
целевая	функция	I
-1,3333		
ограниче	ения	
1		
0		
2,3333		
1		
0,8333		
0,1667		
	А x1 0,8333 целевая -1,3333 ограниче 1 0 2,3333 1 0,8333 0,1667	А В x1 x2 0,8333 0,1667 целевая функция -1,3333 ограничения 1 0,3333 1 0,8333 0,1667

переменных.

Рисунок 20

Как видим, при найденных значениях x₁,x₂ целевая функция принимает минимальное значение равное 2 и этому удовлетворяют все ограничения поставленной задачи.

Графическое решение поставленной задачи выглядит так (рис. 21):

Рисунок 21

Задание №8

Авиакомпания АНГАРА по заказу армии должна перевезти на некотором участке 700 человек. В распоряжении компании имеется два типа самолетов, которые можно использовать для перевозки. Самолет первого типа перевозит 30 пассажиров и имеет экипаж 3 человека, второго типа – 65 и 5 соответственно.

Эксплуатация 1 самолета первого типа обойдется 5000\$, а второго 9000\$. Сколько надо использовать самолетов каждого типа, если для формирования экипажей имеется не более 60 человек.

Для начала, обозначим переменные: пусть X₁ – это оптимальное количество самолетов первого типа, X₂ – оптимальное количества самолетов второго типа. Очевидно, что стоимость эксплуатации самолетов должна быть минимальной. Следовательно,

$5000X_1 + 9000X_2 \rightarrow min$

Теперь определим ограничения. Для формирования экипажей имеется не более 60 человек, следовательно:

$3X_1 + 5X_2 < = 60$

Пассажиров надо перевезти не менее 700 человек, следовательно:

$30X_1 + 65X_2 > = 700$

Сформируем страницу электронной таблицы и постановку задачи линейного программирования в диалоговом окне:

	A	В	Поиск решения	? ×
1	Приближенные значения		Установить целевую ячейку: 👫 🔁 🔁	<u>В</u> ыполнить
2	<u>x1</u>	<u>x2</u>	Равной: О максимальному значению С значению: 0	Закрыть
3	1	1	• минимальному значению	
4	Целевая функция		Изменяя ячейки:	
5	=A3+B3		[\$А\$3:\$В\$3 Предположить	
6			Ограничения:	
7	Ограничения		\$A\$9 >= 700	
8	=3*A3+5*B3		Изменить	Восс <u>т</u> ановить
9	=30*A3+65*B3		<u>Уд</u> алить	Справка
10				<u> </u>

После выполнения поставленной задачи получаем следующие значения переменных. Как показано на рис. 22

	A	В	С
1	Приближенны	ые значе	ния
2	<u>×1</u>	<u>×2</u>	
3	8,888888889	6,66667	
4	Целевая фун	кция	
5	15,55555556		
6			
7	Ограничения		
8	60		
9	700		

Рисунок 22

Т.е. нам необходимо примерно (X₁=8) 8 самолётов первого класса и (X₂=6) 6 самолётов второго класса, для перевозки пассажиров.

Задание #9

Решим еще одну задачу с помощью **Подбор параметра...**. Найдем максимум функции

 $F=2x_1-x_2+x_3 \rightarrow max$ При ограничениях: - $x_1-3x_2+x_3 \ge -5$ $x_1+2x_2+x_3 \le 7$ $x_1+x_2+2x_3 \le 3$ $x_1 \ge 0$ $x_2, \ge 0$ $x_3 \ge 0$ Сформируем страницу электронной таблицы и постановку задачи линейного программирования в диалоговом окне **Подбор параметра**...

	A	В	С
1	x1	x2	x3
2	1	1	1
3			
4	Целевая функция		
5	=2*A2-B2+C2		
6	Ограничения		
7	=-A2-3*B2+C2		
8	=A2+2*B2+C2		
9	=A2+B2+2*C2		
10	=A2		
11	=B2		
12	=C2		

Рисунок 23

Поиск решения		? ×
Установить <u>ц</u> елевую ячейку: <mark>\$A\$5</mark> Равной: • <u>м</u> аксимальному значению	■ <mark>™</mark> О <u>з</u> начению: О	<u>В</u> ыполнить Закрыть
О ми <u>н</u> имальному значению Измен <u>я</u> я ячейки: \$A\$2:\$C\$2 - <u>О</u> граничения:	Тредполо <u>ж</u> ить	араметры
\$A\$10 >= 0 \$A\$11 >= 0 \$A\$12 >= 0 \$A\$7 >= -5 \$A\$8 <= 7 \$A\$9 <= 3	До <u>б</u> авить <u>И</u> зменить Удалить	Восс <u>т</u> ановить <u>С</u> правка

Рисунок 24

После выполнения поставленной задачи получаем следующие значения переменных:

	A	В	С
1	x1	x2	<u>x3</u>
2	3	0	0
3			
4	Целевая (функция	7
5	6		
6	Ограничен	ния	
7	-3		
8	3		
9	3		
10	3		
11	0		
12	0		

Рисунок 25

Как видим, при найденных значениях целевая x₁, x₂, x₃ функция принимает максимальное значение равное 6 и при этом удовлетворяются все ограничения поставленной задачи.

2.4 Системы нелинейных алгебраических уравнений

Задание №10

В начале рассматривался способ решения систем двух нелинейных алгебраических уравнений, имеющих специальный вид, который позволяет привести их к одному уравнению и решать это уравнение с помощью команды **Подбор параметра...**. Такой способ сильно сужает область систем нелинейных уравнений, подлежащих решению, так как не всегда явно можно выразить одну переменную через другую. Кроме того, с его помощью нельзя решать системы, состоящие из более чем двух уравнений.

Команда Сервис/Подбор параметра... обладает широким спектром функций, одна из которых позволяет сконструировать постановку задачи для решения систем нелинейных алгебраических уравнений. В качестве примера рассмотрим решение системы уравнений:

 $\begin{cases} 2A^{3} + ABC + 5A^{2} = 124 \\ 12B + 2A = 8 \\ 3C + 4AC = -6 \end{cases}$

Сформируем лист электронной таблицы как показано на рис 26.

	A	В	С
1	Начальные приближения		
2	A	В	С
3	1	1	1
4			
5	Система уравнений		
6	=2*A3*A3*A3+A3*B3*C3+5*A3*A3		
7	=12*B3+2*A3		
8	=3*C3+4*A3*C3		
9			

Рисунок 26

Систему уравнений разместим в клетках A6, A7, A8, а вместо переменных A, B, C укажем адреса клеток A3, B3 и C3 соответственно, которые содержат приближенные значения переменных.

Для решения системы уравнений следует выполнить команду и заполнить диалоговые окна, как показано на рис 27.

Поиск решения		? ×
Установить целевую ячейку: <u>\$A\$6</u> Равной: С <u>м</u> аксимальному значению © <u>з</u> начен С ми <u>н</u> имальному значению	ию: 124	<u>В</u> ыполнить Закрыть
Измендя ячейки: \$A\$3:\$C\$3	Предположить	<u>П</u> араметры
\$A\$7 = 8 \$A\$8 = -6	До <u>б</u> авить <u>И</u> зменить Удалить	Восс <u>т</u> ановить <u>С</u> правка

Рисунок 27

В такой постановке одно из уравнений системы (любое) выступает как целевая функция, а два других как ограничения. После щелчка на кнопке **ОК** в клетках A3, B3 и C3 получим решение системы уравнений (рис 28).

	А	В	С	D	E	F	G	Н	
1		Решени	e cucme	мы нели	нейных	алгебра	ических	уравне	ний
2	Начальные при	ближения	<u> </u>						
3	A	В	С						
4	3,277737168	0,120377	-0,37242						
5									
6	Система уравн	ений							
- 7 -	124								
8	8								
9	-5,999999986								

Рисунок 28

Таким образом получаем, что решениями системы уравнений являются следующие значения: A=3,28 B=0,12 и C=-0,37.

Здесь, как и в ранее приведенных примерах, большое значение имеет выбор начального приближения, который может обусловить не только нахождение разных решений, но и не обеспечить нахождения ни одного. Это еще раз говорит о необходимости тщательного выбора начального приближения решения. Что можно сделать исходя из косвенных знаний об области расположения интересующего нас решения или владея методами отделения корней.

3. Прогнозирование экономических показателей

Методы прогнозирования, основанные на трендовых и эконометрических моделях, базируются на том, что тенденции и факторы

прошлого сохранятся в будущем. Другими словами, в этих методах используется экстраполяция данных.

Наличие устойчивой тенденции изменения экономического показателя во времени (тренда) позволяет отобразить ее в виде математического выражения. При сохранении выявленного развития можно прогнозировать значения экономического параметра с некоторым упреждением или заблаговременностью. Таким образом, прогнозирование с привлечением трендовой модели – это экстраполяция тенденции в будущее.

Эконометрические модели отображают количественные связи между результативным признаком и влияющими на него факторами. При их использовании для прогнозирования искомой переменной на определенное количество шагов вперед необходимо знать прогнозные значения факторов. В этом смысле трендовые модели имеют преимущество.

В прогнозировании экономических показателей применяют точечные и интервальные оценки. Точечный прогноз представляет собой единственное значение прогнозируемого показателя. В интервальном прогнозе указывается вероятный диапазон изменчивости прогностической величины.

Трендовые модели могут быть линейными и нелинейными. При использовании прямолинейного тренда точечный прогноз определяется по уравнению

$$y_t = at + b , \qquad (3.6)$$

где *а*, *b* – параметры уравнения, *t* – время.

Для расчета доверительного интервала V можно использовать формулу (Федосеев, 1999)

$$V = t_{\alpha}\sigma_{y}\sqrt{1 + \frac{1}{n} + \frac{3(n+2k-1)^{2}}{n(n^{2}-1)}},$$
(3.7)

где t_{α} - значение критерия Стъюдента для уровня значимости α и числа степеней свободы n-2; n – длина ряда; k – период заблаговременности.

Средняя квадратическая погрешность уравнения регрессии вычисляется по формуле

$$\sigma_{y} = \sqrt{\frac{\sum_{i=1}^{n} (y - y_{i})^{2}}{n - m}},$$
(3.8)

где *у*, *y*_t – эмпирические и модельные значения; *m* – число параметров модели.

Используя точечный прогноз и доверительный интервал, интервальное значение прогноза может быть представлено в следующей редакции

$$V_{v} = y_{t+k} \pm V , \qquad (3.9)$$

где y_{t+k} - точечный прогноз по уравнению (4.6) с заблаговременностью k.

Пример. Реализуем предложенную методику прогнозирования по данным о сельском населении Иркутской области старше трудоспособного населения за 1979-2000гг. Для этого интервал упреждения примем k=1, а уровень значимости $-\alpha = 0,1$ или 10%. Воспользуемся данными за 1979-1999гг. для точечного и интервального прогноза на 2000г. (табл. 3.5).

В ячейку А2 помещено название таблицы «Динамика населения старше трудоспособного возраста». В блок А3:D3 введены названия столбцов. В первом из них помещены годы, во втором – численность сельского населения старше трудоспособного возраста, в третьем – результаты вычисления демографического показателя с помощью регрессионного уравнения, а в четвертом – относительная погрешность модели.

Диапазон ячеек C4:C28 заполнен значениями, полученными с помощью функции *ПРЕДСКАЗ(x;Известные_значения_y;Известные_значения_x)*. В этой функции первый аргумент представляет собой заданную координату абсциссы, а последующие параметры – диапазоны значений у и х. Указанная функция, помещенная в ячейку C4, имеет вид =ПРЕДСКАЗ(A4;\$B\$4:\$B\$24; \$A\$4:\$A\$24). Путем копирования содержимого ячейки C4 в диапазон

Α	В	С	D
Динамика сельского населе	ния старше трудоспособно	го возраста	
		1	1
_	Сельское население		<u> </u>
І оды	старше трудоспособного	yt	Относительная
1070	возраста	70.5	погрешность,%
1979	72 0	70,5	2,06
1980	73,8	72,1	2,29
1981	74,9	73,7	1,59
1982	76,4	75,3	1,43
1983	77,9	76,9	1,28
1984	78,8	78,5	0,38
1985	79,1	80,1	1,26
1986	79,9	81,7	2,25
1987	80,3	83,3	3,73
1988	82,3	84,9	3,15
1989	83	86,5	4,20
1990	85,1	88,1	3,51
1991	88,2	89,7	1,68
1992	91,2	91,3	0,08
1993	97,6	92,9	4,84
1994	97,3	94,5	2,91
1995	98,1	96,1	2,07
1996	98,8	97,7	1,15
1997	99,2	99,3	0,06
1998	100,4	100,9	0,46
1999	101,9	102,5	0,55
2000		104,1	
2001		105,7	
2002		107,2	
2003		108,8	1,95
t=	1,729		
Интервал при 10%	V=	4,088	
· · ·		,	
а	1,597142857	-3090,2314	b
σ _a	0,07761809	154,3830967	σ _b
R-квадрат	0,95705346	2,153814591	σν
F-статистика	423,4104989	19	n-m
Сумма регрессии	1964,166286	88,13942857	Остаток
- ,	F _T =	2.99	
	ПРЕДСКАЗ=	104.05	
	ТЕНДЕНЦИЯ=	104.05	

C5:C28, получены аналитические значения демографического показателя по годам.

Обратим внимание на тот факт, что диапазон данных функции указан с абсолютными ссылками. Значения о численности населения, полученные для

Таблица 3.5

2000-2003гг., являются прогностическими. При этом функция *ПРЕДСКАЗ(x; известные_значения_y; известные_значения_x)* автоматически подбирает уравнение по эмпирическим данным.

Добавим к этому, что аналогичные результаты можно получить, используя функцию

ТЕНДЕЦИЯ(известные_значения_у;известные_значения_x;новые_значения_ x; константа).

Отличительной особенностью этой функции является наличие в ней константы (логического выражения 0 или 1), определяющей значение свободного члена уравнения тренда. Если константа равна 0, функция проходит через начало координат, а b=0 (4.6).

Для определения параметров трендовой модели можно использовать функцию ЛИНЕЙН(известные значения у; известные значения х; константа; статистика). Поскольку эта функция позволяет получать множество значений, предварительно выделен диапазон ячеек В32:С36. Затем В первую ячейку блока помещена функция ЛИНЕЙН(В4:В24;А4:А24;1;1). В результате вычислений найдены следующие величины: параметры уравнения (4.6) *а* и *b*, их стандартные ошибки (σ_a и σ_b), коэффициент детерминации (R^2), средняя квадратическая ошибка функции (σ_y), *F*-статистика, разность длины ряда и числа параметров уравнения (*n*-*m*) и суммы квадратов остатков и регрессии. Напомним, что после ввода функции для получения результата необходимо нажать аккорд клавиш CTRL+SHIFT+ENTER.

Задачу определения линейного тренда можно было бы решить, применяя программу «Регрессия» из пакета «Анализ данных».

В ячейках C38 и C39 приведены точечные оценки прогноза на 2000г. с помощью двух различных функций. Результат составил 104,05 тыс. чел. Трендовая модель имеет вид y = 1,597t - 3090. Как уже отмечалось в ячейках C26:C28 (табл. 4.5) приведены точечные оценки прогноза численности

сельского населения старше трудоспособного возраста на 2001-2003гг. с использованием функции *ПРЕДСКАЗ*.

Для определения интервального прогноза в ячейке B29 рассчитано значение критерия Стьюдента: =СТЬЮДРАСПОБР(0,1;19). В качестве уровня значимости принята вероятность 0,1. Число 19 характеризует степени свободы как разность длины ряда и количества параметров уравнения. На основании формулы (4.7) в виде =C34*B29*(1+1/21+(3*(21+2-1)^2/(21*(21^2-1))))^0,5 в ячейке C30 получен доверительный интервал прогностической величины на 2000г. Его значение составило ±4,088 тыс. чел. Отсюда, при уровне значимости 10% вероятность изменения демографического показателя в 2000г. может находиться в пределах $100,01 \le V \le 108,19$.

Приведенная модель является устойчивой, поскольку коэффициент детерминации составил около 0,96 и средняя относительная ошибка аппроксимации незначительна 1,95% (ячейка D28). При этом максимальное ее значение составило 4,84% (ячейка D18).

Относительная ошибка трендовой модели вычислена в ячейке D5 по формуле =ABS(B5-C5)/B5*100, а затем скопирована в диапазон D6:D24.

Значимость уравнения регрессии подтверждается с помощью Fстатистики, характеризующей отношение сумм влияния результирующего признака Q_1 и остатка как случайной составляющей Q_2 :

$$F = \frac{Q_1(n-2)}{Q_2 k_1},\tag{3.10}$$

где $k_1=1$, n – длина ряда. Отношение $Q_2/(n-2)$ соответствует значению σ_y^2 (4.8). Величина Q_1 определяется как разность сумм числителей дисперсий ряда y и его остатка. Значение расчетной F-статистики 423,4, полученное в ячейке B35, значительно превышает теоретическую величину 2,99 (ячейка C38), найденную по формуле =FPACПOБР(0,1;20;18). В обратную функцию F-распределения в качестве аргументов входят: уровень значимости (0,1), степени свободы $k_1=1$ и n-m. Так как расчетное значение F-статистики

превысило теоретический уровень, уравнение регрессии считается значимым.

Задачу прогнозирования экономического показателя на основании трендовой модели можно решить графически. Табличный процессор Excel позволяет осуществлять аппроксимацию, используя линейную, логарифмическую, полиномиальную, экспоненциальную и степенную функции.

Вначале строится эмпирическая зависимость, связывающая значения аргумента и функции, время и демографический показатель. Затем выбирается функция и вычерчивается тренд. После установки периода упреждения рисунок будет дополнен экстраполированной частью функции.

Для построения эмпирической связи предварительно выделяют диапазон АЗ:В24. После этого необходимо активизировать значок панели инструментов «Мастер диаграмм» и выполнить четыре шага. На первом из них выбирается точечный тип диаграммы с первым видом. Поскольку диапазон данных предварительно установлен, опускаем второй и переходим к третьему шагу. Здесь определяются названия диаграммы и осей, и устанавливается разметка оси х. На четвертом шаге выбирают способ размещения диаграммы, например, на отдельный лист. В результаты выполненных действий получена эмпирическая кривая (рис.3.6).

При добавлении линии тренда можно воспользоваться контекстным меню. Для этого указатель мыши устанавливается на одну из эмпирических точек и выполняется щелчок по правой клавише мыши. Из предложенных пунктов меню выбираем «Добавить линию тренда». В окне «Линия тренда» при активизированном вкладыше «Тип» выбираем тип диаграммы ЛИНЕЙНАЯ. Затем активизируем вкладыш «Параметры» и включаем опции «показывать уравнение на диаграмме», «поместить на диаграмму величину достоверности аппроксимации (\mathbb{R}^2)». Установив параметр прогноз «вперед на: 2» нажимаем кнопку ОК. На графике появится линия тренда с уравнением и коэффициентом детерминации \mathbb{R}^2 , а также экстраполируемая

часть прямой на 2000 и 2001 гг. Полученные ординаты представляют собой точечный прогноз.

Рис.3.6. Динамика сельского население старше трудоспособного возраста и линейный тренд

Для сравнения на графике проведена линия тренда степенной функции. Полученная модель имеет вид $y = 10^{-119}t^{36,646}$. При этом коэффициент детерминации степенного тренда несколько выше, чем тот же показатель для линейной зависимости. Вместе с тем разница между коэффициентами детерминации не существенная, а линейное уравнение проще. Поэтому нет смысла для прогнозирования использовать степенную функцию. В приведенной задаче оценить будущие ситуации можно с помощью линейной трендовой модели.

В заключении подчеркнем, что в разделе рассмотрена трендовая модель с использованием функций роста. Более сложными являются адаптивные модели прогнозирования, приспосабливающие свою структуру и параметры к изменению условий. Что касается эконометрических моделей, то здесь имеет место аналогия с трендовыми моделями. Дополнительная задача заключается в прогнозировании фактора или факторов.

Допустим, что связь между стоимостью валовой продукции и стоимостью основных производственных фондов имеет вид y = 5,62x + 1891 при n=29 и $R^2=0,60$. Тогда значение у возможно предсказать на один шаг, если известна будущая величина х с упреждением 1.

Предположим, что стоимость основных производственных фондов в будущем будет наименьшей из имеющегося значения ряда 232 тыс. рублей. В этом случае, подставив в уравнение это значение, получим стоимость валовой продукции 3194,86 тыс. рублей. В противоположной ситуации, при максимальном значении x=10042 из уравнения регрессии величина стоимости валовой продукции достигнет 58327 тыс. рублей.

При определении интервала прогноза может быть использована формула (3.7), которая справедлива для линейной зависимости.

В многофакторном анализе возникает задача прогнозирования множества независимых факторов, что усложняет оценку в будущем результативного признака.

приложение

Варианты заданий для выполнения контрольных работ

Самостоятельная работа №1

Использование программы Excel для работы с массивами и матрицами

Порядок работы:

- 1. Выполнить простейшие операции над массивами (матрицами) данных.
- 2. Выполнить операции над матрицами, используя встроенные функции.
- 3. Выполнить индивидуальное задание.

Методические рекомендации по выполнению лабораторной работы

1. Выполнение простейших операций над массивами (матрицами) данных.

Работу с массивами ячеек (матрицами) в MS Excel обеспечивают Математические, функции категорий Ссылки массивы И И Статистические. При необходимости можно вычислять соответствующие функции, используя Мастер функций f_x . В этом случае аргументом функции является массив (диапазон) ячеек, а соответствующая функция применяется к каждому элементу массива. Нельзя изменять формулу или функцию массива В его отдельной ячейке. однако допускается форматирование как всего массива, так и отдельных его частей.

Формула или **функция массива** заключается в **фигурные скобки** *{***ј** и вводится в следующем порядке:

- 1. Ввести исходные массивы (матрицы) данных в соответствующие диапазоны рабочего листа.
- 2. Выделить предполагаемый диапазон для значений вычисляемого массива.
- 3. В строке формул ввести формулу или функцию, начиная ввод со знака =. При этом операнды формул или аргументы функций можно задать либо непосредственным набором массивов (диапазонов) ячеек с клавиатуры, либо с помощью мыши, протягивая ее указатель вдоль соответствующего массива (диапазона) ячеек.
- 4. Ввод формулы завершить комбинацией клавиш *Ctrl+Shift+Enter*. Результаты вычислений отобразятся в выделенном предварительно массиве (диапазоне) ячеек.
- Задание 1. Выполните операции над массивами данных, как показано на рисунке 1. Используйте *Лист1* рабочей книги.

Пример 1. Для заданных матриц *A* и *B* вычислить элементы матрицы (массива) *A***B*.

Порядок действий:

- 1. Выделить диапазон ячеек *А21:D23* (предполагаемый диапазон результирующей матрицы (*А*B*).
- 2. Щелкнуть мышью в строке формул.
- 3. Ввести с клавиатуры знак =.
- 4. Выделить на рабочем листе диапазон А4:D6 (матрица А).
- 5. Ввести с клавиатуры знак *.
- 6. Выделить на рабочем листе диапазон А9:D11 (матрица В).

7. Нажать на клавиатуре комбинацию клавиш *Ctrl+Shift+Enter*.

Примечание: Ввод диапазонов ячеек, соответствующих матрицам можно вводить в строку формул как непосредственным набором с клавиатуры, так и с помощью перетаскивания мыши вдоль этих диапазонов.

	А	В	С	D	E	F	G	Н		J	К	L	М
1			N	сход	ные ма	ссивы д	аннь	IX					
3		Матри	ица А			Ma	атриц	аC					
4	2	6	8	10		2	8	3	-1				
5	1	3	5	7		-2	5	6	-3				
6	3	6	2	8		4	0	-2	-1				
-													
8		Матри	1ца В			Вектор D			Векто	pF			
9	-2	5	-4	-8		2		3	-2	-1			
10	8	0	-5	-2		-3							
11	5	3	-9	8		5							
13	P	езульт	гирук	щие	массивь	и после вы	полн	ения	опера	ций			
14													
15		D+F			D+F			,	4+C				
16	5	0	1		5		4	14	11	9			
17					0		-1	8	11	4			
18					8		7	6	0	7			
19													
20		A*	в			D^2			ко	PEHb(A)			
21	-4	30	-32	-80		25		1,41	2,45	2,8284	3,1623		
22	8	0	-25	-14		0		1	1,73	2,2361	2,6458		
23	15	18	-18	64		64		1,73	2,45	1,4142	2,8284		
24			A+D										
25		C^2+	·A [*] B	70				1		<u>)S(C)-2</u>	4 40		
26	- 0	94	-23	-79				-2,4	-2,1	-2,99	-1,46		
27	24	20 10	11	-0 65				-2,4	-1,7	-1,04	-2,99		
28	31	10	-14	00				-2,1	- 1	-2,416	-1,46	. [
14 4	• • •	ЛИСТ1	(ЛИСТ2	X JINCE	3/						1	•	

Рис. 1.

Пример 2. Для заданной матрицы C вычислить элементы матрицы по формуле (cos C - 2).

Порядок действий:

- 1. Выделить предполагаемый диапазон результирующей матрицы, например, *H26:K28*.
- 2. Щелкнуть кнопку f_x (*Мастер функций*) в строке формул.
- 3. B диалоговом окне Мастер функций выбрать категорию Математические, а затем функцию COS и нажать кнопку OK.
- 4. В диалоговом окне Аргументы функции в поле Число ввести диапазон матрицы *С*, т.е. *H26:K28*.
- 5. Щелкнуть в строке формул, чтобы продолжить ввод формулы и ввести с клавиатуры символы -2.
- 6. Нажать на клавиатуре комбинацию клавиш *Ctrl+Shift+Enter*.

Самостоятельно. Вычислите элементы массивов, заданных выражениями:

1) $A^{2}+C^{2}$; 2) $D+F+F^{3}$; 3) $\frac{A+D+C}{3}$; 4) $tg\sqrt{A}$; 5)

 $\frac{A+C}{A*B}$

Элементы массивов A, B, C, и D задать произвольно.

2. Выполнение операций над матрицами, с использованием встроенных функций.

В MS Excel имеется набор специальных функций для работы с матрицами.

Это:

- > **МОБР(массив)** вычисляет матрицу, обратную заданной;
- > **МОПРЕД(массив)** вычисляет определитель матрицы;
- > **МУМНОЖ (массив1; массив2)** производит матричное произведение двух матриц;
- > **ТРАНСП(массив)** производит транспонирование матрицы, т.е. преобразует вертикальный диапазон ячеек в горизонтальный и наоборот;
- > СТОЛБЕЦ(ссылка) определяет номер столбца, на который указывает ссылка;
- > СТРОКА(ссылка) определяет номер строки, на которую указывает ссылка;
- **СУММКВРАЗН(массив** X;массив Y) вычисляет сумму квадратов разностей соответствующих значений в двух массивах;
- > СУММПРОИЗВ(массив1; массив2; массив3; ...) вычисляет сумму произведений соответствующих элементов массивов;
- СУММРАЗНКВ(массив Х;массив Y) вычисляет сумму разностей квадратов соответствующих элементов в двух массивах) и т.д.

Кроме того, при решении различных задач используются и другие встроенные функции:

- СУММКВ(аргум.1; аргум.2) вычисляет сумму квадратов аргументов. Аргументом могут быть числа, массивы, имена или ссылки на ячейки, содержащие числа;
- СУММЕСЛИ(диапазон;критерий;диапазон) суммирует содержимое ячеек, соответствующих указанному условию;
- СЧЕТЕСЛИ(duanasoh; "критерий") подсчет в заданном диапазоне непустых ячеек по заданному критерию и т.д.

Порядок ввода встроенных функций смотрите в п.1.

Задание 2. Используя перечисленные встроенные функции, выполните операции над массивами данных, как показано на рисунке 2. Используйте *Лист2* той же рабочей книги.

Пример 3. Вычислить матрицу *А*⁻¹, т.е. обратную для матрицы *А*. Порядок действий:

1. Выделить предполагаемый диапазон искомой матрицы A⁻¹, т.е. *E4:G6*.

	A	В	С	D	E	F	G	Н		J	К	L
1	Использование встроенных функций											
2								-				
3	M	атрица	Α		Обрат	ная матр	ица А ⁻¹	Определитель матрицы А			трицы А	
4	2	3	5		1,3	-0,9	0,3		-22			
5	4	6	8		-2,2	1,4	-0,2					
6	7	5	2		1,0	-0,5	0,0					
7												
8	M	атрица	В		t	Латрица	<u>c</u>			Матрица	D	
9	-2	5	-4		12	25	13		1	10	100	
10	3	-6	7		10	15	14		2	20	200	
11	2	10	18		21	16	18		3	30	300	
12												
13	Т	РАНСП(B)		Умножение матриц B*D				Колич	чений в		
14	-2	3	2		-4	-40	-400		матр	ице В мен	ьших О	
15	5	-6	10		12	120	1200		3			
16	-4	7	18		76	760	7600					
17												
18	СУММ	произ	B(C;D)		0	УММКВ(A)		$\sum c_{\mu} d_{\mu}$	$-\sum a_{\pi}^2$		
19	10625				232			l	g-g	y		
20									10393			
21	Сумма	элемент	гов									
	матриц	ы С бол	ьших									
22	20 (ссы	лка на з	яч.А23)									
23	>20	46										
24												
25												

Рис. 2.

- 2. Щелкнуть на кнопке f_x (*Мастер функций*) в строке формул.
- 3. В диалоговом окне *Мастер функций* выбрать функцию *МОБР* (категория *Математические*) и щелкнуть на кнопке *ОК*.
- 4. В диалоговом окне *Аргументы функции* в поле *Массив* ввести диапазон матрицы *А*, т.е. *А4:С6*.

5. Нажать на клавиатуре комбинацию клавиш *Ctrl+Shift+Enter*.

Пример 4. Определить количество отрицательных элементов в матрице *В*.

Порядок действий:

- 1. Выделить ячейку, в которой предполагается отобразить результат выполнения встроенной функции. Замечание: Т.к. в данном случае результатом выполнения данной функции является одно число, то выделяется одна ячейка.
- В строку формул ввести с клавиатуры функцию =СЧЁТЕСЛИ(А9:С11;"<0").
- 3. Щелкнуть на кнопке *Enter* в строке формул или нажать клавишу *Enter* на клавиатуре.

Самостоятельно: Используя встроенные функции для массивов, вычислите элементы новых массивов или значения встроенных функций для массивов данных. Исходные массивы (матрицы) задайте произвольно.

- 1. Для матрицы **B** размером 3х5 вычислить матрицу (**B**^T)⁻¹, где **B**^T транспонированная матрица.
- 2. Выполнить матричное произведение матриц A и A^{-1} .
- 3. Вычислить определитель матрицы (А+В).
- 4. Вычислить $\sum b_{ij}^2 + 3 \sum b_{ij}$, где b_{ij} элементы матрицы **B**.
- 5. Вычислить сумму квадратов разностей матриц **В** и **С**.
- 6. Вычислить элементы матрицы по формуле $lnC + \frac{I}{B}$.

Варианты заданий

Найти сумму матриц

1)
$$\dot{A} = \begin{pmatrix} 13 & 5 & 17 \\ 1 & 2 & -1 & 0 \\ 14 & 3 & 21 \end{pmatrix}$$
 $H = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & -2 \\ -1 & 0 & 1 \end{pmatrix}$
2) $\dot{A} = \begin{pmatrix} 16 & 5 & 4 \\ 1 & 0 & 1 & -2 \end{pmatrix}$ $H = \tilde{N} = \begin{pmatrix} 2 & 3 & -2 \\ -1 & 2 & 0 \end{pmatrix}$

$$\hat{A} = \begin{bmatrix} 1 & 0 & 1 & -2 \\ 13 & 3 & 11 \end{bmatrix} \qquad \qquad \tilde{N} = \begin{bmatrix} -1 & 2 & 0 \\ 1 & 0 & 4 \end{bmatrix}$$

3)
$$\hat{A} = \begin{pmatrix} 31 & 5 & 4 \\ 27 & -1 & 1 \\ 17 & 3 & 0 \end{pmatrix}$$
 H $\tilde{N} = \begin{pmatrix} 2 & 1 & 4 \\ 4 & 0 & -2 \\ -1 & 6 & 1 \end{pmatrix}$
4) $\hat{A} = \begin{pmatrix} 11 & 5 & 6 \\ -2 & 1 & 0 \\ 14 & 3 & -1 \end{pmatrix}$ H $\tilde{A} = \begin{pmatrix} 4 & 1 & 6 \\ 2 & 3 & -3 \\ -1 & 0 & 1 \end{pmatrix}$
5) $\hat{A} = \begin{pmatrix} 14 & 12 & 13 \\ -2 & -1 & 0 \\ 4 & 3 & 1 \end{pmatrix}$ H $\hat{A} = \begin{pmatrix} 15 & -2 & 4 \\ 13 & 3 & -1 \\ -11 & 1 & 7 \end{pmatrix}$
6) $\hat{A} = \begin{pmatrix} 14 & 2 & 16 \\ 12 & -2 & 10 \\ 4 & 3 & 11 \end{pmatrix}$ H $\hat{A} = \begin{pmatrix} 11 & 2 & 14 \\ 12 & 13 & -2 \\ -1 & 10 & 1 \end{pmatrix}$
7) $\hat{A} = \begin{pmatrix} 11 & 5 & 4 \\ 12 & -2 & 2 \\ -11 & 3 & 0 \end{pmatrix}$ H $\hat{A} = \begin{pmatrix} 5 & 1 & 7 \\ 2 & 0 & -2 \\ -1 & 3 & 1 \end{pmatrix}$
8) $\hat{A} = \begin{pmatrix} 14 & 5 & 1 \\ 13 & -1 & 6 \\ 12 & 3 & 0 \end{pmatrix}$ H $\hat{A} = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & -2 \\ -1 & 0 & 1 \end{pmatrix}$
9) $\hat{A} = \begin{pmatrix} 13 & 2 & 7 \\ 12 & -1 & 0 \\ 14 & 3 & 2 \end{pmatrix}$ H $\hat{A} = \begin{pmatrix} 5 & 2 & 4 \\ 2 & 3 & -2 \\ -1 & 0 & 1 \end{pmatrix}$

Найти сумму матриц 2А+3В (3С или 3Д)

1)
$$\hat{A} = \begin{pmatrix} 16 & 5 & 4 \\ 11 & 1 & -2 \\ 13 & 3 & 1 \end{pmatrix}$$
 $\mathcal{H} \quad \hat{A} = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & -2 \\ -1 & 0 & 1 \end{pmatrix}$
2) $\hat{A} = \begin{pmatrix} 6 & 5 & 4 \\ 1 & 1 & -2 \\ 3 & 3 & 1 \end{pmatrix}$ $\mathcal{H} \quad \tilde{N} = \begin{pmatrix} 12 & 1 & 4 \\ 14 & 0 & -2 \\ -11 & 6 & 1 \end{pmatrix}$

3)
$$\hat{A} = \begin{pmatrix} 15 & -2 & 4 \\ 13 & 3 & -1 \\ -11 & 1 & 7 \end{pmatrix}$$
 $\mathcal{H} \quad \tilde{N} = \begin{pmatrix} 2 & 1 & 4 \\ 4 & 0 & -2 \\ -1 & 6 & 1 \end{pmatrix}$
4) $\hat{A} = \begin{pmatrix} 1 & 5 & 6 \\ -2 & 1 & 0 \\ 4 & 3 & -1 \end{pmatrix}$ $\mathcal{H} \quad \hat{A} = \begin{pmatrix} 11 & 2 & 4 \\ 12 & 3 & -2 \\ -11 & 0 & 1 \end{pmatrix}$
5) $\hat{A} = \begin{pmatrix} 14 & 2 & 13 \\ -12 & -1 & 10 \\ 4 & 3 & 1 \end{pmatrix}$ $\mathcal{H} \quad \hat{A} = \begin{pmatrix} 5 & -2 & 4 \\ 3 & 3 & -1 \\ -1 & 1 & 7 \end{pmatrix}$
6) $\hat{A} = \begin{pmatrix} 11 & 12 & 14 \\ 2 & 3 & -2 \\ -1 & 10 & 1 \end{pmatrix}$ $\mathcal{H} \quad \tilde{N} = \begin{pmatrix} 2 & 1 & 4 \\ 4 & 0 & -2 \\ -1 & 6 & 1 \end{pmatrix}$
7) $\hat{A} = \begin{pmatrix} 14 & -20 \\ 13 & 10 \end{pmatrix}$ $\mathcal{H} \quad \tilde{N} = \begin{pmatrix} 5 & 0 \\ -2 & 1 \end{pmatrix}$
8) $\hat{A} = \hat{A} = \begin{pmatrix} 11 & 12 & 4 \\ 21 & 13 & -2 \\ -10 & 0 & 1 \end{pmatrix}$ $\mathcal{H} \quad \tilde{N} = \begin{pmatrix} 2 & 1 & 4 \\ 4 & 0 & -2 \\ -1 & 6 & 1 \end{pmatrix}$
9) $\hat{A} = \hat{A} = \begin{pmatrix} 17 & 22 & 4 \\ 21 & 3 & -2 \\ -10 & 0 & 1 \end{pmatrix}$ $\mathcal{H} \quad \tilde{N} = \begin{pmatrix} 2 & 1 & 4 \\ 4 & 0 & -2 \\ -1 & 6 & 1 \end{pmatrix}$

Найти произведение матриц

1)
$$\hat{A} = \begin{pmatrix} 4 & 2 & 3 \\ -2 & -1 & 0 \\ 4 & 3 & 1 \end{pmatrix}$$
 $\mathcal{H} \quad \hat{A} = \begin{pmatrix} 15 & -2 & 4 \\ 13 & 3 & -1 \\ -11 & 1 & 7 \end{pmatrix}$

2)
$$\hat{A} = \begin{pmatrix} 4 & 2 & 6 \\ 2 & -2 & 0 \\ 4 & 3 & 1 \end{pmatrix}$$
 $\mathcal{U} \quad \hat{A} = \begin{pmatrix} 11 & 2 & 4 \\ 12 & 3 & -2 \\ -10 & 0 & 1 \end{pmatrix}$

3)
$$\hat{A} = \begin{pmatrix} 1 & 5 & 4 \\ 2 & -2 & 2 \\ -1 & 3 & 0 \end{pmatrix}$$
 $\mathcal{U} \quad \hat{A} = \begin{pmatrix} 15 & 1 & 7 \\ 12 & 0 & -2 \\ -11 & 3 & 1 \end{pmatrix}$
4) $\hat{A} = \begin{pmatrix} 1 & 5 & 6 \\ -2 & 1 & 0 \\ 4 & 3 & -1 \end{pmatrix}$ $\mathcal{U} \quad \hat{A} = \begin{pmatrix} 11 & 20 & 4 \\ 12 & 31 & -2 \\ -10 & 20 & 1 \end{pmatrix}$

5)
$$\hat{A} = \begin{pmatrix} 4 & 2 & 3 \\ -2 & -1 & 0 \\ 4 & 3 & 1 \end{pmatrix}$$
 $\mathcal{U} = \hat{A} = \begin{pmatrix} 15 & -2 & 4 \\ 13 & 3 & -1 \\ -11 & 1 & 7 \end{pmatrix}$

6)
$$\hat{A} = \begin{pmatrix} 4 & -2 \\ 3 & 1 \end{pmatrix}$$
 $\mathcal{U} = \begin{bmatrix} 12 & 1 & 4 \\ 14 & 0 & -2 \\ -11 & 6 & 1 \end{bmatrix}$

7)
$$\hat{A} = \begin{pmatrix} 14 & -2 \\ 13 & 1 \end{pmatrix}$$
 $\mathcal{U} = \begin{bmatrix} 5 & 0 \\ -2 & 1 \end{pmatrix}$

8)
$$\hat{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$$
 Ψ $\tilde{N} = \begin{pmatrix} 2 & 1 & 4 \\ 4 & 0 & -2 \\ -1 & 6 & 1 \end{pmatrix}$
9) $\hat{A} = \begin{pmatrix} 1 & 5 & 6 \\ -2 & 1 & 0 \\ 4 & 3 & -1 \end{pmatrix}$ Ψ $\hat{A} = \begin{pmatrix} 11 & 2 & 4 \\ 12 & 3 & -2 \\ -10 & 0 & 1 \end{pmatrix}$

Дана матрица А найти обратную матрицу

1)
$$\hat{A} = \begin{pmatrix} 1 & 5 & 4 \\ 2 & -2 & 2 \\ -1 & 3 & 0 \end{pmatrix}$$

2)
$$\dot{A} = \begin{pmatrix} 1 & 5 & 6 \\ -2 & 1 & 0 \\ 4 & 3 & -1 \end{pmatrix}$$

3) $\dot{A} = \begin{pmatrix} 4 & 2 & 3 \\ -2 & -1 & 0 \\ 4 & 3 & 1 \end{pmatrix}$
4) $\dot{A} = \begin{pmatrix} 6 & 5 & 4 \\ 1 & 1 & -2 \\ 3 & 3 & 1 \end{pmatrix}$
5) $\dot{A} = \begin{pmatrix} 4 & -2 \\ 3 & 1 \end{pmatrix}$
6) $\dot{A} = \begin{pmatrix} 1 & 5 & 6 \\ -2 & 1 & 0 \\ 4 & 3 & -1 \end{pmatrix}$
7) $\dot{A} = \begin{pmatrix} 4 & 2 & 3 \\ -2 & -1 & 0 \\ 4 & 3 & -1 \end{pmatrix}$
8) $\dot{A} = \begin{pmatrix} 5 & -2 & 4 \\ 3 & 3 & -1 \\ -1 & 1 & 7 \end{pmatrix}$
9) $\dot{A} = \begin{pmatrix} 2 & 1 & 4 \\ 4 & 0 & -2 \\ -1 & 6 & 1 \end{pmatrix}$

САМОСТОЯТЕЛЬНАЯ РАБОТА №2

Решить систему уравнений

1)
$$\begin{cases} y - 3z + 4t = -5\\ x - 2z + 3t = -4\\ 3x + 2y - 5t = 12\\ 4x + 3y - 5z = 5 \end{cases}$$

2)
$$\begin{cases} x - 3y + 5z - 7t = 12\\ 3x - 5y + 7z - t = 0\\ 5x - 7y + z - 3t = 4\\ 7x - y + 3z - 5t = 16 \end{cases}$$

$$3) \begin{cases} 2y + z + 4t = 5\\ 3x - 2z + t = -4\\ x + 2y - 5z = 12\\ 4x + 3y - 5z = 5 \end{cases}$$

4)
$$\begin{cases} 3y - z + 2t = 7\\ x - 2z + 3t = -4\\ 3x + 2y - 5t = 12\\ 2x + y - 3z = 5 \end{cases}$$

5)
$$\begin{cases} 2x + 3y + 2z = 9\\ x + 2y - 3z = 14\\ 3x + 4y + z = 16 \end{cases}$$

$$6) \begin{cases} y - 2x + 3t = 14 \\ x - 2y + t = 10 \\ 3x + 2y - 5t = 12 \\ 4x + 3y - 5z = 5 \end{cases}$$
$$(y - z + 2t = 9)$$

7)
$$\begin{cases} y - z + 2t = 9\\ 3x - 2z + t = -4\\ 2x + 2y - 5t = 12\\ x + 3y - 5z = 5 \end{cases}$$

8)
$$\begin{cases} 2y - 3z + t = 5\\ x - 2z + 3t = -4\\ 2x + 3y - 4t = 15\\ 2x + y - 3z = 5 \end{cases}$$

9)
$$\begin{cases} 2x - 3y + 5z - 2t = 14\\ 3x - 5y + 7z - t = 0\\ 7x - 5y + 3z - t = 4\\ 7x - y + 3z - 5t = 16 \end{cases}$$

САМОСТОЯТЕЛЬНАЯ РАБОТА №3

Транспортная задача

Среди специальных задач линейного программирования выделяется транспортная задача. Остановимся подробнее на формулировке этой задачи.

В транспортной задаче рассматриваются пункты отправления $A_1, A_2,..., A_m$ и назначения $B_1, B_2,..., B_n$. Задача состоит в нахождении оптимального плана перевозки груза x_{ij} из пунктов отправления в пункты назначения. Если тариф перевозки единицы груза обозначить c_{ij} и целевая функция представляет собой минимальную стоимость перевозки, то транспортная задача записывается в следующем виде:

$$f = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}, \qquad (4.1)$$

$$\sum_{j=1}^{n} x_{ij} = a_i \ (i = \overline{1, m}),$$
(4.2)

$$\sum_{i=1}^{m} x_{ij} = b_j \ (j = \overline{1, n}), \tag{4.3}$$

$$x_{ij} \ge 0, \qquad (4.4)$$

 a_i – объемы товара в пунктах отправления; b_j – потребности в грузе в пунктах назначения.

Неотрицательное решение уравнений (4.2) и (4.3), определенное матрицей $X=(x_{ij})$, является планом транспортной задачи. План $X^*=(x_{ij}^*)$ ($i=\overline{1,m}, j=\overline{1,n}$), при котором функция (4.1) достигает минимума, называется оптимальным планом.

Если объем груза поставщиков соответствует его потребности, т.е.

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j , \qquad (4.5)$$

то задача считается закрытой. В противном случае, если равенство (4.5) представляет собой неравенство, транспортная задача называется открытой. При преобладании левой части над правой вводится дополнительный пункт назначения n+1. Потребность в этом случае для дополнительного пункта равна $\sum_{i=1}^{n} a_i - \sum_{j=1}^{n} b_j$ с тарифом перевозки, равным нулю. Если же имеет место дефицит груза (правая часть равенства (4.5) преобладает на левой), тогда

вводят дополнительный пункт поставки m+1 с запасом груза $\sum_{i=1}^{n} b_{i} - \sum_{i=1}^{m} a_{i}$. Как

и в предыдущем случае тариф приравнивают к нулю.

При решении транспортной задачи можно использовать симплексметод. Вместе с тем он не всегда является эффективным. Поэтому применяются другие методы, учитывающие особенности транспортных задач.

Рассмотрим <u>метод потенциалов</u>, который состоит из нескольких этапов. В начале составляется опорный план перевозок. На этом этапе можно использовать следующие методы: наименьших стоимостей, северо-западного угла и аппроксимации Фогеля. На втором этапе применимы методы потенциалов и дифференциальных рент. Здесь осуществляется проверка оптимальности оперного плана. Если опорный план не оптимален, то выполняется корректировка плана (третий этап). Итерации второго и третьего этапов завершаются при получении оптимального решения.

В учебном пособии рассмотрено определение оптимального плана на примере. При этом использованы методы наименьших стоимостей и потенциалов. Предложенные методы применены для закрытой транспортной задачи, когда суммы поставляемых и потребляемых товаров равны. Следует подчеркнуть, что число базисных ячеек равно m+n-1, где m, n – число потребителей и поставщиков. Поскольку задача является закрытой, то количество отличных от нуля неизвестных (базисные переменные) на единицу меньше суммы m+n.

Пример 4.1. На двух полях A_1 и A_2 собран урожай картофеля 1800 и 2400 т. Полученную продукцию необходимо поставить в три склада B_1 , B_2 и B_3 . В первом из них может храниться 1200 т картофеля, во втором – 2000 т и в третьем – 1000 т. Известна стоимость перевозки, приведенная в таблице 28. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

Поля		Запасы		
	B ₁			
A_1	11	9	12	1800
A_2	10	13	14	2400
Потребности	1200	2000	1000	4200

Таблица 4.1 – Тариф перевозки картофеля, д.е./т

Целевая функция с учетом тарифов примет вид

$$f=11x_{11}+9x_{12}+12x_{13}+10x_{21}+13x_{22}+14x_{23} \rightarrow min.$$

Ограничения по перевозке продукции из полей в хранилища записываются так:

 $x_{11}+x_{12}+x_{13}=1800 \ [m], x_{21}+x_{22}+x_{23}=2400 \ [m].$

Условия, связанные с возможностями хранилищ имеют вид:

 $x_{11}+x_{21}=1200 \ [m],$ $x_{12}+x_{21}=2000 \ [m],$ $x_{13}+x_{23}=1000 \ [m].$

Задача является закрытой, поскольку объемы картофеля соответствуют емкостям хранилищ.

Пример 4.2. В таблице 3.1 приведены исходные данные транспортной задачи. Определить оптимальный план.

На первом этапе определяется опорный план. Для наименьшей стоимости (9), которая находится на пересечении первой строки и второго столбца, присваиваем максимальное значение переменной x_{12} , равное 1800 (таблица 4.2).

Поставщики		и	
	1200	2000	1000
1800	11	9	12
2400	10	13	14
	1200	200	1000

Таблица 4.2 – Определение опорного плана

Поскольку во втором столбце сумма должна соответствовать 2000, определяем значение $x_{23} = 200$. Следующая наименьшая стоимость равна 10, поэтому $x_{12} = 1200$, что соответствует суммарному значению первого потребителя. Для того чтобы во второй строке сумма равнялась 2400, переменной x_{23} присвоено значение 1000.

В результате суммарные затраты составят

 $f(x) = c_{12} \times x_{12} + c_{21} \times x_{21} + c_{22} \times x_{22} + c_{23} \times x_{23} =$

 $9 \times 1800 + 10 \times 1200 + 13 \times 200 + 14 \times 1000 = 48000$ g.e.

На втором этапе проверяется оптимальность полученного плана. Для этого вводятся переменные u_i и v_i , соответствующие строкам и столбцам

(таблица 4.3). Эти переменные характеризуют потенциал или цены товаров в соответствующих пунктах поставщиков и потребителей. Потенциалы определяются по формуле

$$V_j = u_i + c_{ij}.$$

Поставщик		u_i		
И	1200	2000	1000	
1800	11	9 1800	12	0
2400	10 1200	13 200	14 1000	-4
$ u_j$	6	9	10	

Таблица 4.3 – Нахождение потенциалов поставщиков и потребителей

При этом одно из неизвестных, например, u_1 может быть равно 0.

В таблице 4.3 приведены значения u_i и v_j , полученные на основе базисных переменных. В начале значение потенциала стоит приравнять к 0 ($u_1 = 0$). Тогда согласно формуле потенциалов $v_2 = 9$. По тому же выражению нетрудно найти $u_2=9-13 = -4$.

Зная это значение, получаем $v_1 = 10 - 4 = 6$ и $v_3 = 14 - 4 = 10$.

Для оценки оптимальности плана используется формула

$$d_{i_j} = (u_i + c_{i_j}) - V_j.$$

Это выражение позволяет определить матрицу, размер которой соответствует числу строк и столбцов исходной таблицы *m*×*n*. Исходя из этой формулы, матрица оценок оптимального плана имеет вид

$$d_{ij} = \begin{pmatrix} 5 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Поскольку все оценки неотрицательны, то полученный план не может быть улучшен. Следовательно, определено оптимальное решение. Третий этап, связанный с улучшением плана не понадобился.

Пример 4.3. Пусть задан опорный план (таблица 3.4). Требуется получить оптимальное решение, используя метод потенциала.

Используя формулу оценки оптимальности плана d_{ij} , получим следующую матрицу

$$d_{ij} = \begin{pmatrix} 5 & 0 & 2 \\ 0 & 0 & -2 \end{pmatrix}$$

Целевая функция при этом $f(x) = 9 \times 800 + 12 \times 1000 + 10 \times 1200 + 13 \times 1200 = 46800$

Приведенный план не является оптимальным ввиду наличия отрицательного элемента в матрице. Построим контур перераспределения значений *x*_{ij} в виде штриховой (таблица 4.5). Началом контура является ячейка с наименьшим потенциалом. При этом потенциалам, располагаемым по диагонали, присваивается символ + или - .

Поставщики		Потребите	ли
	1200	2000	1000
1800	11	9	12
		800	1000
2400	10	13	14
	1200	1200	

Таблица 4.4 – Опорный план транспортной задачи

Таблица 4.5 – Транспортная задача с потенциалами потребителей и поставщиков

Постав		u_i		
щики	1200	2000	1000	
1800	11	9+	12-	0
		800	1000	
2400	10	13-	14+	-4
	1200	1200		
V_j	6	9	12	

Перераспределение осуществляется с отрицательных в положительные ячейки. Тогда значение x_{13} =1000 перенесем в соседнюю клетку, увеличив величину x_{12} до 1800. В этом случае x_{13} =0. Что касается значения x_{22} =1200, то оно распределено так: x_{22} =200 и x_{23} =1000 (таблица 4.6).

Матрица оценок полученного плана примет вид

$$d_{ij} = \begin{pmatrix} 5 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Поставщик		Потребители					
И	1200	2000	1000				
1800	11	9 1800	12	0			
2400	10 1200	13 200	14 1000	-4			
\mathcal{V}_j	6	9	10				

Таблица 4.6 - Итерация получения нового плана

Поскольку отрицательные элементы в матрице отсутствуют, определено оптимальное решение: $f(x) = 9 \times 1800 + 10 \times 1200 + 13 \times 200 + 14 \times 1000 = 44800$ д.е.

Таким образом, первая итерация позволила получить оптимальный результат.

Варианты заданий

1. На двух полях A_1 и A_2 собран урожай картофеля 1400 и 2000 т. Полученную продукцию необходимо поставить в три склада B_1 , B_2 и B_3 . В первом из них может храниться 1200 т картофеля, во втором – 1300 т и в третьем – 900 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

		T	T, A	
Поля	Склады			Запасы
	B_1	B_2	\mathbf{B}_3	
A ₁	10	9	12	1400
A_2	11	13	14	2000
Потребности	1200	1300	900	3400

Тариф перевозки картофеля, д.е./т

2. На двух полях A_1 и A_2 собран урожай картофеля 2200 и 2000 т. Полученную продукцию необходимо поставить в три склада B_1 , B_2 и B_3 . В первом из них может храниться 1200 т картофеля, во втором – 1600 т и в третьем – 1400 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

	Га	риф	пе	ревозки	ка	рто	реля,	д.е./	Έ
--	----	-----	----	---------	----	-----	-------	-------	---

Поля	Склады			Запасы
	B ₁	B_2	\mathbf{B}_3	

A_1	12	9	12	2200
A_2	10	15	14	2000
Потребности	1200	1600	1400	4200

На двух полях А₁ и А₂ собран урожай картофеля 1800 и 2000 т. 3. Полученную продукцию необходимо поставить в три склада В₁, В₂ и В₃. В первом из них может храниться 1000 т картофеля, во втором – 1600 т и в третьем – 1200 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

Тариф перевозки картофеля, д.е./т					
Поля		Запасы			
	B_1	B_2	\mathbf{B}_3		
A_1	11	9	14	1800	
A_2	10	13	12	2000	
Потребности	1000	1600	1200	3800	

4. На двух полях А₁ и А₂ собран урожай картофеля 1900 и 2100 т. Полученную продукцию необходимо поставить в три склада В₁, В₂ и В₃. В первом из них может храниться 1100 т картофеля, во втором – 1600 т и в третьем – 1300 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

	гариф п	еревозки картофел	ія, д.е./т	
Поля	Склады			Запасы
	B ₁	B_2	B ₃	
A_1	12	9	13	1900
A_2	10	13	11	2100
Потребности	1100	1600	1300	4000

т

На двух полях А₁ и А₂ собран урожай картофеля 2500 и 2100 т. 5. Полученную продукцию необходимо поставить в три склада В₁, В₂ и В₃. В первом из них может храниться 1500 т картофеля, во втором – 1700 т и в третьем – 1400 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

Гариф перевозки картофеля, д.е./т						
Поля	Склады			Запасы		
	B_1	B_2	B_3			
A_1	13	10	15	2500		
A_2	11	14	12	2100		
Потребности	1500	1700	1400	4600		

На двух полях А₁ и А₂ собран урожай картофеля 2400 и 2200 т. 6.

Полученную продукцию необходимо поставить в три склада B_1 , B_2 и B_3 . В первом из них может храниться 1500 т картофеля, во втором – 1800 т и в третьем – 1300 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

	i upii upii upii upii upii upii upii up	epebosian napropes	м, д.е., т	
Поля	Склады			Запасы
	B ₁	B_2	B ₃	
A_1	14	11	15	2400
A_2	12	14	12	2200
Потребности	1500	1800	1300	4600

Тариф перевозки картофеля, д.е./т

7. На двух полях A_1 и A_2 собран урожай картофеля 2600 и 2200 т. Полученную продукцию необходимо поставить в три склада B_1 , B_2 и B_3 . В первом из них может храниться 1400 т картофеля, во втором – 1900 т и в третьем – 1500 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

Гариф перевозки картофеля, д.е./1					
Поля	Склады			Запасы	
	B_1	B_2	\mathbf{B}_3		
A_1	13	11	15	2600	
A_2	12	14	10	2200	
Потребности	1400	1900	1500	4800	

Тариф перевозки картофеля, д.е./т

8. На двух полях A_1 и A_2 собран урожай картофеля 1500 и 2000 т. Полученную продукцию необходимо поставить в три склада B_1 , B_2 и B_3 . В первом из них может храниться 1200 т картофеля, во втором – 1300 т и в третьем – 1000 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

Поля Склады Запасы B_1 \mathbf{B}_3 \mathbf{B}_2 13 12 15 1500 A_1 11 14 10 2000 A_2 Потребности 1200 1300 1000 3500

Тариф перевозки картофеля, д.е./т

9. На двух полях A_1 и A_2 собран урожай картофеля 1900 и 2100 т. Полученную продукцию необходимо поставить в три склада B_1 , B_2 и B_3 . В первом из них может храниться 1300 т картофеля, во втором – 1200 т и в третьем – 1500 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция

VONOLATIONIOT	MITTER VOLT THE TO	DOTIDOTTI I	$\mathbf{D} = \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}$	
	минимальныс	занлаты ғ		
<i>inputtopily</i>		Julpulpill	ia nepebosity	продукции.
1 1 2		1	1 2	1 2

Поля	Склады			Запасы
	B ₁	B ₂	B ₃	
A ₁	12	13	14	1900
A ₂	11	15	10	2100
Потребности	1300	1200	1500	4000

Тариф перерозки картофеля п.е./т

10. На двух полях А₁ и А₂ собран урожай картофеля 1600 и 2000 т. Полученную продукцию необходимо поставить в три склада В₁, В₂ и В₃. В первом из них может храниться 1000 т картофеля, во втором – 1200 т и в третьем – 1400 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

	тариф п	еревозки картофел	ія, д.е./т	
Поля	Склады			Запасы
	B ₁	B_2	B_3	
A_1	13	12	14	1600
A_2	10	15	11	2000
Потребности	1000	1200	1400	3600

đ. т

На двух полях А₁ и А₂ собран урожай картофеля 2600 и 2100 т. 11. Полученную продукцию необходимо поставить в три склада В₁, В₂ и В₃. В первом из них может храниться 1800 т картофеля, во втором – 1700 т и в третьем – 1200 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

Гариф перевозки картофеля, д.е./1						
Поля	Склады			Запасы		
	B ₁	B_2	B ₃			
A_1	13	13	14	2600		
A_2	11	15	12	2100		
Потребности	1800	1700	1200	4700		

Тариф перерозки картофеля пе/т

На двух полях А₁ и А₂ собран урожай картофеля 1800 и 2100 т. 12. Полученную продукцию необходимо поставить в три склада В₁, В₂ и В₃. В первом из них может храниться 1300 т картофеля, во втором – 1200 т и в третьем – 1400 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

I I I I I I I I I I I

Поля	Склады			Запасы
	B_1	B_2	\mathbf{B}_3	

A_1	13	11	15	1800
A_2	12	14	12	2100
Потребности	1300	1200	1400	3900

На двух полях А₁ и А₂ собран урожай картофеля 2000 и 2500 т. 13. Полученную продукцию необходимо поставить в три склада В₁, В₂ и В₃. В первом из них может храниться 1400 т картофеля, во втором – 1200 т и в третьем – 1900 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

Тариф перевозки картофеля, д.е./т					
Поля		Запасы			
	B ₁	B_2	B ₃		
A_1	13	11	12	2000	
A_2	10	14	15	2500	
Потребности	1400	1200	1900	4500	

На двух полях А₁ и А₂ собран урожай картофеля 1400 и 1700 т. 14. Полученную продукцию необходимо поставить в три склада В₁, В₂ и В₃. В первом из них может храниться 1400 т картофеля, во втором – 1200 т и в третьем – 1900 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

Гариф перевозки картофеля, д.е./т						
Поля	Склады			Запасы		
	B_1	B_2	B_3			
A_1	12	10	12	1400		
A_2	9	13	14	1700		
Потребности	1000	1200	900	3100		

т 1

На двух полях А₁ и А₂ собран урожай картофеля 1800 и 1700 т. 15. Полученную продукцию необходимо поставить в три склада В₁, В₂ и В₃. В первом из них может храниться 1200 т картофеля, во втором – 1300 т и в третьем – 1000 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

Тариф перевозки картофеля, д.е./т					
Поля	Склады			Запасы	
	B_1	B_2	\mathbf{B}_3		
A_1	12	9	12	1800	
A_2	10	13	14	1700	
Потребности	1200	1300	1000	3500	

На двух полях А₁ и А₂ собран урожай картофеля 1900 и 1800 т. 16. Полученную продукцию необходимо поставить в три склада В₁, В₂ и В₃. В первом из них может храниться 1100 т картофеля, во втором – 1200 т и в третьем – 1400 т. Известна стоимость перевозки, приведенная в таблице. Требуется сформулировать транспортную задачу, в которой целевая функция характеризует минимальные затраты на перевозку продукции.

Поля		Запасы				
	B ₁	B_2	B ₃			
A_1	14	9	11	1900		
A_2	10	13	14	1800		
Потребности	1100	1200	1400	3700		

Тариф перевозки картофеля, д.е./т

Федурина Нина Ивановна

«Математическое моделирование»

Методические рекомендации

Лицензия на издательскую деятельность ЛР № 070444 от 11.03.98 г. Подписано в печать 29.02.2020 г. Тираж 2<mark>0</mark> экз.

Издательство ФГБОУ ВО Иркутский ГАУ 664038 Иркутская обл., Иркутский район, пос. Молодежный